Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercaptans, alkylation halogenation

As esters the alkyl halides are hydrolysed by alkalis to alcohols and salts of halogen acids. They are converted by nascent hydrogen into hydrocarbons, by ammonia into amines, by alkoxides into ethers, by alkali hydrogen sulphides into mercaptans, by potassium cyanide into nitriles, and by sodium acetate into acetic esters. (Formulate these reactions.) The alkyl halides are practically insoluble in water but are, on the other hand, miscible with organic solvents. As a consequence of the great affinity of iodine for silver, the alkyl iodides are almost instantaneously decomposed by aqueous-alcoholic silver nitrate solution, and so yield silver iodide and alcohol. The important method of Ziesel for the quantitative determination of alkyl groups combined in the form of ethers, depends on this property (cf. p. 80). [Pg.98]

The lower members of the homologous series of 1. Alcohols 2. Aldehydes 3. Ketones 4. Acids 5. Esters 6. Phenols 7. Anhydrides 8. Amines 9. Nitriles 10. Polyhydroxy phenols 1. Polybasic acids and hydro-oxy acids. 2. Glycols, poly-hydric alcohols, polyhydroxy aldehydes and ketones (sugars) 3. Some amides, ammo acids, di-and polyamino compounds, amino alcohols 4. Sulphonic acids 5. Sulphinic acids 6. Salts 1. Acids 2. Phenols 3. Imides 4. Some primary and secondary nitro compounds oximes 5. Mercaptans and thiophenols 6. Sulphonic acids, sulphinic acids, sulphuric acids, and sul-phonamides 7. Some diketones and (3-keto esters 1. Primary amines 2. Secondary aliphatic and aryl-alkyl amines 3. Aliphatic and some aryl-alkyl tertiary amines 4. Hydrazines 1. Unsaturated hydrocarbons 2. Some poly-alkylated aromatic hydrocarbons 3. Alcohols 4. Aldehydes 5. Ketones 6. Esters 7. Anhydrides 8. Ethers and acetals 9. Lactones 10. Acyl halides 1. Saturated aliphatic hydrocarbons Cyclic paraffin hydrocarbons 3. Aromatic hydrocarbons 4. Halogen derivatives of 1, 2 and 3 5. Diaryl ethers 1. Nitro compounds (tertiary) 2. Amides and derivatives of aldehydes and ketones 3. Nitriles 4. Negatively substituted amines 5. Nitroso, azo, hy-drazo, and other intermediate reduction products of nitro com-pounds 6. Sulphones, sul-phonamides of secondary amines, sulphides, sulphates and other Sulphur compounds... [Pg.1052]

Arylsulfonyl chlorides are reduced by zinc dust and sulfuric acid at 0° to give high yields of thiophenols Tin and hydrochloric acid and a mixture of phosphorus, potassium iodide, and phosphoric acid have also been used. Preliminary experiments with lithium aluminum hydride on both alkyl- and aryl-sulfonyl chlorides gave 45 50% yields of mercaptans. Halogen atoms on the benzene ring are stable during the reduction. ... [Pg.395]

Improvements in acrylonitrile yield are also reported with other vapor phase promoters. A patent assigned to Monsanto Co. (125) describes the use of sulfur and sulfur-containing compounds in the feed gas mixture for production of acrylonitrile or methacrylonitrile from propane or isobutane over metal oxide catalysts. Examples of effective sulfur-containing compounds include alkyl or dialkyl sulfides, mercaptans, hydrogen sulfide, ammonium sulfide, and sulfiir dioxide. Best results are apparently achieved using a molar ratio of sulfur (or sulfur compound) to hydrocarbon of 0.0005 1 to 0.01 1. Nitric oxide has also been examined as a gas-phase promoter for propane and isobutane ammoxidation (126). However, it does not appear to be as effective as halogen or sulfur. Selectivities to acrylonitrile from propane are only about 30% over an alumina-supported chromium-nickel oxide catalyst. [Pg.281]

Friedel-Crafts reaction catalysts like anhydrous aluminum chloride are readily soluble in the nitroalkanes. Solutions containing up to 50% aluminum chloride are easily prepared in nitroalkane solvents. These catalytically active complexes, AICI3-RNO2, can be isolated and used in solvents other than the nitroalkane. The reactants in the Friedel-Crafts reaction are often soluble in the nitroalkane reaction medium. Other catalysts like boron trifluoride (BF3), titanium tetrachloride (TiCl4), and stannic tetrachloride (SnCl4) are also soluble in the nitroalkane solvents. Reaction types which use nitroparaffins as solvents include alkylation of aromatics, acetylation of aromatics, halogenations, nitrations, and the reaction of olefins and hydrogen sulfide to yield mercaptans. [Pg.276]


See other pages where Mercaptans, alkylation halogenation is mentioned: [Pg.118]    [Pg.165]    [Pg.103]    [Pg.117]    [Pg.248]    [Pg.118]   
See also in sourсe #XX -- [ Pg.821 ]




SEARCH



Alkyl halogens

Alkyl mercaptans

Mercaptan

Mercaptane

Mercaptanes

Mercaptans

Mercaptans, alkylation

© 2024 chempedia.info