Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes protein permeability

Mitochondrial permeability transition involves the opening of a larger channel in the inner mitochondrial membrane leading to free radical generation, release of calcium into the cytosol and caspase activation. These alterations in mitochondrial permeability lead eventually to disruption of the respiratory chain and dqDletion of ATP. This in turn leads to release of soluble intramito-chondrial membrane proteins such as cytochrome C and apoptosis-inducing factor, which results in apoptosis. [Pg.776]

In series with a desolvation energy barrier required to disrupt aqueous solute hydrogen bonds [14], the lipid bilayer offers a practically impermeable barrier to hydrophilic solutes. It follows that significant transepithelial transport of water-soluble molecules must be conducted paracellularly or mediated by solute translocation via specific integral membrane proteins (Fig. 6). Transcellular permeability of lipophilic solutes depends on their solubility in GI membrane lipids relative to their aqueous solubility. This lumped parameter, membrane permeability,... [Pg.171]

Moroney, J.V., Wamcke, K., and McCarthy, R.F. (1982) The distance between thiol groups in the gamma subunit of coupling factor 1 influences the protein permeability of thylakoid membranes. J. Bioenerg. Biomembr. 14, 347. [Pg.1096]

To date, the lipids so far used have been mainly extracts from natural sources such as EPC and archaeal lipids[17,18] The chemical stability of EPC, however, is not sufficient and the membrane permeability to H1 is sometimes too high for quantitative analyses of membrane protein functions. Though archaeal lipids display many preferable features for... [Pg.129]

There are several hypotheses for a specific mechanism by which ONOO- can control the open state of the PTPC. Briefly the PTPC is regulated by primary constituents of the pore, including the inner membrane adenine nucleotide translocase (ANT) and the outer membrane protein voltage-dependent anion channel (VDAC or porin). The VDAC-ANT complex can bind to signaling proteins that modulate permeability transition, such as pro-apoptotic Bax (which opens the pore) and anti-apoptotic Bcl-2... [Pg.363]

Mitochondria (45-56) are organelles possessing a double membrane, the inner of which is invaginated as cristae. An intermembrane space exists between the inner and outer membranes. The inner membrane consists of an unusually high amount of protein and possesses spherically shaped particles approx 9 nm in diameter. These particles appear to be equivalent to F0, Fb and adenosine triphosphatase. In contrast to the inner membrane, the outer membrane is smooth and appears to be connected to the smooth er. This membrane is permeable to all molecules of 10,000 Dalton or less. A mitochondrial matrix is enclosed by the inner membrane and consists of a ground substance of particles, nucleoids, ribosomes, and electron-transparent regions containing DNA. [Pg.22]

The inhibition of amino-acid transport has been regarded as the main toxic effect of mercury compounds [82], The biochemical mechanism underlying the inhibition is unclear. In unfertilized sea-urchin eggs an interaction with the amino-acid carrier was found, whereas in fertilized eggs inhibition of amino-acid transport was indirect and might result from an elevation of the Na + content of the egg caused by the inhibition of the Na+ pump [83]. The action on the diffusional process could be mediated by an effect on membrane phospholipids or on membrane proteins, or by interaction with Ca2+ which stabilizes membrane structure. Mercuric chloride in skate liver cells inhibited amino acid transport, decreased Na + /K + -ATPase (adenosinetriphosphatase) activity, impaired volume regulatory mechanisms and increased the permeability of the plasma membrane to potassium [84]. It has been suggested that... [Pg.195]

Baida MS, Whitney JA, Flores C, Gonzalez-Mariscal L, Cereijido M, and Matter K [1996] Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by the expression of a mutant tight junction membrane protein. J Cell Biol 134 1031-1049... [Pg.364]

Incubate dishes with NGG-sap-PBS solution for 10 min at room temperature. The normal goat globulin serves as a blocking protein to minimize nonspecific binding, and the 0.1% saponin renders the fixed cell membranes reversibly permeable to proteins (see Notes 4 and 5). [Pg.123]

Intrinsic system Apoptosis is initiated due to changes to the mitochondria during which the inner membrane becomes permeable to large molecules, probably as a result of a decrease in the membrane potential. This can result from intracellular damage (e.g. accumulation of Ca ions), lack of oxygen or fuel. This results in release of cytochrome c and other proteins from the mitochondria which stimulate apoptosis. In fact, these apoptotic proteins plus cytochrome c form a complex, the apoptosome, which activates an initiator caspase. [Pg.480]

A parameter (usually symbolized by P, and often containing a subscript to indicate the specific ion) that is a measure of the ease with which an ion can cross a unit area of membrane by simple (or passive) diffusion through a membrane experiencing a 1.0 M concentration gradient. For a particular biological membrane, the permeabilities are dependent on the concentration and activity of various channel or transporter proteins. In an electrically active cell (e.g., a neuron), increasing the permeability of K+ or CF will usually result in hyperpolarization of the membrane. Increasing will cause depolarization. [Pg.542]

PERMEABILITY PERMEABILITY CONSTANT MEMBRANE POTENTIAL ACTION POTENTIAL DEPOLARIZATION GOLDMAN EQUATION NERNST EQUATION RESTING POTENTIAL THRESHOLD POTENTIAL PATCH-CLAMP TECHNIQUE Membrane protein dynamics,... [Pg.760]

When the cardiac cell membrane becomes permeable to a specific ion (ie, when the channels selective for that ion are open), movement of that ion across the cell membrane is determined by Ohm s law current = voltage -f resistance, or current = voltage x conductance. Conductance is determined by the properties of the individual ion channel protein. The voltage term is the difference between the actual membrane potential and the reversal potential for that ion (the membrane potential at which no current would flow even if channels were... [Pg.273]


See other pages where Membranes protein permeability is mentioned: [Pg.122]    [Pg.273]    [Pg.373]    [Pg.387]    [Pg.390]    [Pg.35]    [Pg.818]    [Pg.173]    [Pg.256]    [Pg.97]    [Pg.161]    [Pg.324]    [Pg.326]    [Pg.348]    [Pg.28]    [Pg.609]    [Pg.129]    [Pg.130]    [Pg.131]    [Pg.143]    [Pg.147]    [Pg.151]    [Pg.6]    [Pg.33]    [Pg.175]    [Pg.317]    [Pg.45]    [Pg.170]    [Pg.46]    [Pg.51]    [Pg.127]    [Pg.207]    [Pg.38]    [Pg.162]    [Pg.221]    [Pg.97]    [Pg.250]   
See also in sourсe #XX -- [ Pg.296 , Pg.297 , Pg.298 ]




SEARCH



Membranes, permeable

Protein cell membrane permeability

© 2024 chempedia.info