Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melamine-formaldehyde product

Amino plastics urea-, thiourea- and melamine-formaldehyde products... [Pg.181]

Amino and Phenolic Resins. The largest use of formaldehyde is in the manufacture of urea—formaldehyde, phenol—formaldehyde, and melamine—formaldehyde resins, accounting for over one-half (51%) of the total demand (115). These resins find use as adhesives for binding wood products that comprise particle board, fiber board, and plywood. Plywood is the largest market for phenol—formaldehyde resins particle board is the largest for urea—formaldehyde resins. Under certain conditions, urea—formaldehyde resins may release formaldehyde that has been alleged to create health or environmental problems (see Amino RESINS AND PLASTICS). [Pg.497]

Urea—formaldehyde resins are also used as mol ding compounds and as wet strength additives for paper products. Melamine—formaldehyde resins find use in decorative laminates, thermoset surface coatings, and mol ding compounds such as dinnerware. [Pg.497]

Daylight fluorescent pigments (qv) are considered to be nontoxic. Since they are combinations of polymers and dyestuffs, the combined effect of the ingredients must be taken into account when considering the net toxic effect of these materials. Table 5 gives results of laboratory animal toxicity tests of standard modified melamine—formaldehyde-type pigments, the Day-Glo A Series, and the products recommended for plastic mol ding, Day-Glo Z-series. [Pg.304]

In the eady 1920s, experimentation with urea—formaldehyde resins [9011-05-6] in Germany (4) and Austria (5,6) led to the discovery that these resins might be cast into beautiful clear transparent sheets, and it was proposed that this new synthetic material might serve as an organic glass (5,6). In fact, an experimental product called PoUopas was introduced, but lack of sufficient water resistance prevented commercialization. Melamine—formaldehyde resin [9003-08-1] does have better water resistance but the market for synthetic glass was taken over by new thermoplastic materials such as polystyrene and poly(methyl methacrylate) (see Methacrylic polya rs Styrene plastics). [Pg.321]

N,]S7-bis(methoxymethyl)uron was first isolated and described in 1936 (41), but was commercialized only in 1960. It is manufactured (42) by the reaction of 4 mol of formaldehyde with 1 mol of urea at 60°C under highly alkaline conditions to form tetramethylolurea [2787-01-1]. After concentration under reduced pressure to remove water, excess methanol is charged and the reaction continued under acidic conditions at ambient temperatures to close the ring and methylate the hydroxymethyl groups. After filtration to remove the precipitated salts, the methanolic solution is concentrated to recover excess methanol. The product (75—85% pure) is then mixed with a methylated melamine—formaldehyde resin to reduce fabric strength losses in the presence of chlorine, and diluted with water to 50—75% soHds. Uron resins do not find significant use today due to the greater amounts of formaldehyde released from fabric treated with these resins. [Pg.330]

Amino Resins. Amino resins (qv) include both urea- and melamine—formaldehyde condensation products. They are thermosets prepared similarly by the reaction of the amino groups in urea [57-13-6] or melamine [108-78-1] with formaldehyde to form the corresponding methylol derivatives, which are soluble in water or ethanol. To form plywood, particle board, and other wood products for adhesive or bonding purposes, a Hquid resin is mixed with some acid catalyst and sprayed on the boards or granules, then cured and cross-linked under heat and pressure. [Pg.328]

Plastic laminated sheets produced in 1913 led to the formation of the Formica Products Company and the commercial introduction, in 1931, of decorative laminates consisting of a urea—formaldehyde surface on an unrefined (kraft) paper core impregnated with phenoHc resin and compressed and heated between poHshed steel platens (8,10). The decorative surface laminates are usually about 1.6 mm thick and bonded to wood (a natural composite), plywood (another laminate), or particle board (a particulate composite). Since 1937, the surface layer of most decorative laminates has been fabricated with melamine—formaldehyde, which can be prepared with mineral fiUers, thus offering improved heat and moisture resistance and allowing a wide range of decorative effects (10,11). [Pg.3]

Another significant end-use for polyamines is in preparation of paper wet-strength resins. These are polyamide, modified formaldehyde, and polyamine resins used to improve the physical strength of tissue, toweling, and packaging paper products. The cationic formaldehyde resins include both urea—formaldehyde and melamine—formaldehyde types (248,249). Cationic functionaHty is imparted by incorporation of DETA, TETA, and/or TEPA in... [Pg.47]

By the mid-1990s world production of aminoplastics was estimated at about 6 000 000 t.p.a. of which more than 5 000 000 t.p.a. were urea-formaldehyde resins. The bulk of the rest were melamine-formaldehyde. Such bald statistics, however, disguise the fact that a considerable amount of aminoplastics used are actually co-condensates of urea, melamine and formaldehyde. [Pg.669]

Melamine (I,3,5-triamino-2,4,6-triazine) was first prepared by Liebig in 1835. For a hundred years the material remained no more than a laboratory curiosity until Henkel patented the production of resins by condensation with formaldehyde. Today large quantities of melamine-formaldehyde resins are used in the manufacture of moulding compositions, laminates, adhesives, surface coatings and other applications. Although in many respects superior in properties to the urea-based resins they are also significantly more expensive. [Pg.680]

Reaction of melamine with neutralised formaldehyde at about 80-100°C leads to the production of mixture of water-soluble methylolmelamines. These hydroxymethyl derivatives can possess up to six methylol groups per molecule and include trimethylolmelamine and hexamethylolmelamine (Figure 24.8) The methylol content of the mixture will depend on the melamine formaldehyde ratio and on the reaction conditions. [Pg.682]

In a typical process a jacketed still fitted with a stirrer and reflux condenser in charged with 240 parts 37% w/w (40% w/v) formalin and the pH adjusted to 8.0-8.5 using sodium carbonate solution with the aid of a pH meter. One hundred and twenty six parts of melamine (to give a melamine formaldehyde ratio of 1 3) are charged into the still and the temperature raised to 85°C. The melamine goes into solution and forms methylol derivatives. For treatment of fabrics, paper and leather this product may be diluted and cooled for immediate use. It may also be spray dried to give a more stable product. Cooling the solution would yield crystalline trimethylolmelamine, which may be air dried but which is less soluble in water than the spray-dried product. [Pg.683]

Dicyandiamide forms white, non-hygroscopic crystals which melt with decomposition at 209°. Its most important reaction is conversion to melamine (Fig. 8.25) by pyrolysis above the mp under a pressure of NH3 to counteract the tendency to deammonation. Melamine is mainly used for melamine-formaldehyde plastics. Total annual production of both H2NCN and NCNC(NH2)2 is on the 30 000 tonne scale. [Pg.324]

Seventy years ago, nearly all resources for the production of commodities and many technical products were materials derived from natural textiles. Textiles, ropes, canvas, and paper were made of local natural fibers, such as flax and hemp. Some of them are still used today. In 1908, the first composite materials were applied for the fabrication of big quantities of sheets, tubes, and pipes in electrotechnical usage (paper or cotton as reinforcement in sheets made of phenol- or melamine-formaldehyde resins). In 1896, for example, airplane seats and fuel tanks were made of natural fibers with a small content of polymeric binders [1]. [Pg.787]

Uses of Urea. The major use of urea is the fertilizer field, which accounts for approximately 80% of its production (about 16.2 billion pounds were produced during 1994 in U.S.). About 10% of urea is used for the production of adhesives and plastics (urea formaldehyde and melamine formaldehyde resins). Animal feed accounts for about 5% of the urea produced. [Pg.146]

The industrial production and application of reactive and non-reactive microgels in organic coatings such as binders or components of binders, e.g. together with, e.g. acrylic and/or melamine/formaldehyde resins, especially for automotive coatings, was reported in a number of publications between 1980 and... [Pg.220]

Other nonfood applications of D-sorbitol result from etherification and polycondensation reactions providing biodegradable polyetherpolyols used for soft pol5mrethane foams and melamine/formaldehyde or phenol resins. Sizable amounts of D-sorbitol also enter into the production of the sorbitan ester surfactants (cf. later in this chapter). [Pg.29]

Melamine (cyanuramide) is obtained by heating dicyanodiamide (structure 17.20), which is obtained by heating cyanamide. Melamine, which is used for the production of melamine-formaldehyde resins, is also obtained by heating urea (structure 17.21)... [Pg.535]


See other pages where Melamine-formaldehyde product is mentioned: [Pg.92]    [Pg.92]    [Pg.303]    [Pg.517]    [Pg.10]    [Pg.328]    [Pg.332]    [Pg.333]    [Pg.290]    [Pg.22]    [Pg.337]    [Pg.354]    [Pg.5]    [Pg.684]    [Pg.688]    [Pg.1050]    [Pg.580]    [Pg.362]    [Pg.517]    [Pg.521]    [Pg.274]    [Pg.335]    [Pg.131]    [Pg.568]    [Pg.299]    [Pg.185]    [Pg.125]    [Pg.321]    [Pg.290]    [Pg.22]    [Pg.576]   
See also in sourсe #XX -- [ Pg.57 , Pg.64 ]




SEARCH



Formaldehyde production

Formaldehyde products

Melamine

Melamine production

Melamine-formaldehyde resins production

Urea-and Melamine-Formaldehyde Condensation Products

© 2024 chempedia.info