Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Meerwein-Ponndorf-Verley reaction transition state

The Meerwein-Ponndorf-Verley reaction usually321 involves a cyclic transition state 322... [Pg.917]

The deviation from Cram s rule has been attributed to the cyclic nature of the transition state of the Meerwein-Ponndorf-Verley reaction129. The situation may be further complicated by hydride transfer from external aluminum isopropoxide units not involved in the cyclic six-mem-bered transition state49,5S-13°. These competitive mechanistic pathways (external vs internal hydride transfer) depend on the experimental conditions (concentrations of reactants etc.). These have also been observed in the reduction of cyclic 1,2-diones where an internal hydride transfer to the intermediate a-hydroxy ketones may be sterically hindered. In these cases the stereochemical outcome of Meerwein-Ponndorf-Verley reactions cannot be definitely predicted. [Pg.817]

The Meerwein-Ponndorf-Verley (MPV) reduction is generally mediated by aluminum triiso-propoxide, Al(01Pr)3. In MPV reduction, reversible hydride transfer occurs via a six-membered transition state (Scheme 67). By removing acetone from the reaction system, the reversible reaction proceeds smoothly. The advantages of the reduction are the mildness of the reaction conditions, chemoselectivity, safety, operational simplicity, and its applicability to large-scale synthesis. It is reported that the addition of trifluoroacetic acid, significantly accelerates the reduction (Scheme 68) 304,305 in which case a catalytic amount of Al(0 Pr)3 is enough to complete the reaction. [Pg.429]

The aluminium-catalyzed hydride shift from the a-carbon of an alcohol component to the carbonyl carbon of a second component, which proceeds via a six-membered transition state, is referred to as the Meerwein-Ponndorf-Verley Reduction (MPV) or the Oppenauer Oxidation, depending on which component is the desired product. If the alcohol is the desired product, the reaction is viewed as the Meerwein-Ponndorf-Verley Reduction. [Pg.152]

In fact, a variation of this reaction has been utilized in the well-known Meerwein-Ponndorf-Verley reduction of carbonyl compounds (reverse of Oppenauer oxidation of alcohols) by aluminum isopropoxide The reaction involves a six-centered transition state, wherein the P-hydride is delivered into an incoming carbonyl group [Eq. (6.86)]. The stereochemistry of this reaction has been studied in detail. ... [Pg.353]

Zeolite titanium beta has been tested in the liquid- and gas-phase Meerwein-Ponndorf-Verley reduction of cyclohexanones and the Oppenauer oxidation of cyclohexanols. A high selectivity towards the thermodynamically unfavourable cis-alcohol was observed, which has been ascribed to transition-state selectivity in the pores of the zeolite. Under gas-phase conditions the dehydration of alcohols to cycloalkenes is observed as a side reaction. The catalyst was found to be active even in the presence of water and ammonia. [Pg.1015]

Summary Meerwein-Ponndorf-Verley and Oppenauer reactions (MPVO) are catalysed by metal oxides which possess surface basicity or Lewis acidity. Recent developments include the application of basic alkali or alkaline earth exchanged X-type zeolites and the Lewis-acid zeolites BEA and [Ti]-BEA. The BEA catalysts show high stereoselectivity, as a result of restricted transition state selectivity, in the MPV reduction of substituted alkylcyclohexanones with i-PrOH. [Pg.531]

Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions are usually mediated by metal alkoxides such as Al(0/-Pr)3. The activity of these catalysts is related to their Lewis-acidic character in combination with ligand exchangeability. The mechanism of these homogeneous MPVO reactions proceeds via a cyclic six-membered transition state in which both the reductant and the oxidant are co-ordinated to the metal center of the metal alkoxide catalyst (Scheme 1). The alcohol reactant is co-ordinated as alkoxide. Activation of the carbonyl by co-ordination to Al(III)-alkoxide initiates the hydride-transfer reaction from the alcoho-late to the carbonyl. The alkoxide formed leaves the catalyst via an alcoholysis reaction with another alcohol molecule, usually present in excess [Ij. [Pg.438]

Meerwein-Ponndorf-Verley reductions, unlike many asymmetric reductions, involve a reversible redox reaction. Hydride transfer from the asymmetric center is believed to take place within a six-membered cyclic transition state (A) or (B), Fig. 9]. The lower-energy transition state will be that having the larger groups trans [(B) in Fig. 9]. The enantiomer of the product carbinol which results from this lower-energy transition state will predominate in a kinetically controlled, asymmetric Meerwein-Ponndorf-Verley reduction. [Pg.161]

One of the chemoselective and mild reactions for the reduction of aldehydes and ketones to primary and secondary alcohols, respectively, is the Meerwein-Ponndorf-Verley (MPV) reduction. The lifeblood reagent in this reaction is aluminum isopropoxide in isopropyl alcohol. In MPV reaction mechanism, after coordination of carbonyl oxygen to the aluminum center, the critical step is the hydride transfer from the a-position of the isopropoxide ligand to the carbonyl carbon atom through a six-mem-bered ring transition state, 37. Then in the next step, an aluminum adduct is formed by the coordination of reduced carbonyl and oxidized alcohol (supplied from the reaction solvent) to aluminum atom. The last step is the exchange of produced alcohol with solvent and detachment of oxidized alcohol which is drastically slow. This requires nearly stoichiometric quantities of aluminum alkoxide as catalyst to prevent reverse Oppenauer oxidation reaction and also to increase the time of reaction to reach complete conversion. Therefore, accelerating this reaction with the use of similar catalysts is always the subject of interest for some researchers. [Pg.251]


See other pages where Meerwein-Ponndorf-Verley reaction transition state is mentioned: [Pg.3]    [Pg.53]    [Pg.33]    [Pg.100]    [Pg.194]    [Pg.290]    [Pg.531]    [Pg.117]    [Pg.34]    [Pg.155]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Meerwein

Meerwein reaction

Meerwein-Ponndorf - Verley

Meerwein-Ponndorf reaction

Meerwein-Ponndorf-Verley reaction

Ponndorf

Transition states reactions

© 2024 chempedia.info