Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanisms, organic synthesis

Some systematic studies on the different reaction schemes and how they are realized in organic reactions were performed some time ago [18]. Reactions used in organic synthesis were analyzed thoroughly in order to identify which reaction schemes occur. The analysis was restricted to reactions that shift electrons in pairs, as either a bonding or a free electron pair. Thus, only polar or heteiolytic and concerted reactions were considered. However, it must be emphasized that the reaction schemes list only the overall change in the distribution of bonds and ftee electron pairs, and make no specific statements on a reaction mechanism. Thus, reactions that proceed mechanistically through homolysis might be included in the overall reaction scheme. [Pg.188]

The Peterson olefination is a quite modern method in organic synthesis its mechanism is still not completely understood. " The a-silyl organometallic reagent 2 reacts with the carbonyl substrate 1 by formation of a carbon-carbon single bond to give the diastereomeric alkoxides 4a and 4b upon hydrolysis the latter are converted into /3-hydroxysilanes 5a and 5b ... [Pg.227]

Introductory discussion of the scope and mechanism of each reaction has been kept to a minimum. Many excellent texts and reviews exist that provide thorough and accurate discussion of the more theoretical aspects of organic synthesis, and the student is referred to these sources and to the original literature frequently. Since it is the purpose... [Pg.210]

Abstract Since its discovery the chromium-mediated benzannulation reaction has been developed into a unique and useful tool in organic synthesis. In this review, topical aspects of this reaction concerning its mechanism and the chemo-, regio- and stereoselectivity are summerised and discussed in detail. Special attention is paid to the asymmetric benzannulation reaction and, finally, the importance of this reaction as a key step in the total synthesis of natural products is outlined. [Pg.123]

The Diels-Alder reaction, probably the most widely used methodology in organic synthesis today, has contributed greatly to the development of mechanistic and theoretical chemistry. The recent discovery of a Diels-Alderase enzyme has provided insights into the mechanism of biosynthetic cycloaddition. [Pg.351]

Like many other antibodies, the activity of antibody 14D9 is sufficient for preparative application, yet it remains modest when compared to that of enzymes. The protein is relatively difficult to produce, although a recombinant format as a fusion vdth the NusA protein was found to provide the antibody in soluble form with good activity [20]. It should be mentioned that aldolase catalytic antibodies operating by an enamine mechanism, obtained by the principle of reactive immunization mentioned above [15], represent another example of enantioselective antibodies, which have proven to be preparatively useful in organic synthesis [21]. One such aldolase antibody, antibody 38C2, is commercially available and provides a useful alternative to natural aldolases to prepare a variety of enantiomerically pure aldol products, which are otherwise difficult to prepare, allovdng applications in natural product synthesis [22]. [Pg.68]

Such techniques mean that the chemical literature may be used more effectively, and that its use can be partially automated. Might this lead to a way of automating organic synthesis To make most molecules there are many strategies which may be successful. If each reaction of each strategy can be evaluated for similarity to a reaction recorded in the literature, it should be possible to develop a route to most molecules by mechanically searching the chemical literature, so that suitable precedent is found for every transformation. [Pg.53]

As described above, simple mutation, regardless of rational or random, sometimes changes the function of enzymes in a drastic manner. Especially, in the case of enzymes belonging to enolase superfamily, including decarboxylases, consideration of the reaction mechanism is important because the apparently different transformations proceed via a similar key intermediate. Thus, the well-designed mutation and structure of the substrates will lead to a successful expansion of the application of enzymes in organic synthesis. [Pg.338]

The oxidation of alcohols to the corresponding carbonyl compounds is one of the key reactions in organic synthesis and nnmerous methods have been developed over the years to accomplish this transformation [16], A general mechanism for Pd-catalysed aerobic oxidation is shown below (Scheme 10.5). [Pg.241]

Metal-catalyzed hydrophosphination has been explored with only a few metals and with a limited array of substrates. Although these reactions usually proceed more quickly and with improved selectivity than their uncatalyzed counterparts, their potential for organic synthesis has not yet been exploited fully because of some drawbacks to the known reactions. The selectivity of Pt-catalyzed reactions is not sufficiently high in many cases, and only activated substrates can be used. Lanthanide-catalyzed reactions have been reported only for intramolecular cases and also sulfer from the formation of by-products. Recent studies of the mechanisms of these reactions may lead to improved selectivity and rate profiles. Further work on asymmetric hydrophosphination can be expected, since it is unlikely that good stereocontrol can be obtained in radical or acid/base-catalyzed processes. [Pg.153]

The methods of organic synthesis have continued to advance rapidly and we have made an effort to reflect those advances in this Fifth Edition. Among the broad areas that have seen major developments are enantioselective reactions and transition metal catalysis. Computational chemistry is having an expanding impact on synthetic chemistry by evaluating the energy profiles of mechanisms and providing structural representation of unobservable intermediates and transition states. [Pg.1328]

The methods available for synthesis have advanced dramatically in the past half-century. Improvements have been made in selectivity of conditions, versatility of transformations, stereochemical control, and the efficiency of synthetic processes. The range of available reagents has expanded. Many reactions involve compounds of boron, silicon, sulfur, selenium, phosphorus, and tin. Catalysis, particularly by transition metal complexes, has also become a key part of organic synthesis. The mechanisms of catalytic reactions are characterized by catalytic cycles and require an understanding not only of the ultimate bond-forming and bond-breaking steps, but also of the mechanism for regeneration of the active catalytic species and the effect of products, by-products, and other reaction components in the catalytic cycle. [Pg.1338]


See other pages where Mechanisms, organic synthesis is mentioned: [Pg.773]    [Pg.199]    [Pg.215]    [Pg.773]    [Pg.199]    [Pg.215]    [Pg.147]    [Pg.587]    [Pg.29]    [Pg.4]    [Pg.164]    [Pg.587]    [Pg.460]    [Pg.195]    [Pg.525]    [Pg.234]    [Pg.83]    [Pg.945]    [Pg.1136]    [Pg.1165]    [Pg.8]    [Pg.343]    [Pg.255]    [Pg.225]    [Pg.46]    [Pg.588]    [Pg.171]    [Pg.552]    [Pg.553]    [Pg.555]    [Pg.253]    [Pg.379]    [Pg.1343]    [Pg.183]    [Pg.452]    [Pg.76]    [Pg.76]    [Pg.37]    [Pg.671]    [Pg.211]   
See also in sourсe #XX -- [ Pg.187 , Pg.188 ]




SEARCH



Mechanical organs

Mechanical synthesis

Organic mechanisms

Synthesis mechanism

© 2024 chempedia.info