Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanisms of acetaldehyde

The decomposition of acetaldehyde is found to be overall first-order with respect to the acetaldehyde and to have an overall activation energy of 60 kcal/mol. Assume the following hypothetical sequence to be the chain decomposition mechanism of acetaldehyde ... [Pg.69]

Concurrent with acetic anhydride formation is the reduction of the metal-acyl species selectively to acetaldehyde. Unlike many other soluble metal catalysts (e.g. Co, Ru), no further reduction of the aldehyde to ethanol occurs. The mechanism of acetaldehyde formation in this process is likely identical to the conversion of alkyl halides to aldehydes with one additional carbon catalyzed by palladium (equation 14) (18). This reaction occurs with CO/H2 utilizing Pd(PPh )2Cl2 as a catalyst precursor. The suggested catalytic species is (PPh3)2 Pd(CO) (18). This reaction is likely occurring in the reductive carbonylation of methyl acetate, with methyl iodide (i.e. RX) being continuously generated. [Pg.142]

Fujii,H, Tsukuma, ., Saegusa,T, Furukawa,J. Initiation mechanism of acetaldehyde polymerization by alkyl aluminum catalyst Makromol. Chem. 82,32(1965). [Pg.106]

The Wacker process was a major landmark and a great push towards the development of homogeneous catalysis. The mechanism of acetaldehyde formation differs fundamentally from the other oxidation processes as O2 itself is not directly involved. As is clear from Figure 28 the actual oxidant is Pd(II) which is reduced to Pd(0). The intimate pathway of the reaction involves nucleophilic attack and was the subject of much debate. [Pg.66]

The mechanism of acetaldehyde oxidation is relatively complex. Considering only molecular species, the main steps appear to be... [Pg.377]

Studies of the reaction mechanism of the catalytic oxidation suggest that a tit-hydroxyethylene—palladium 7t-complex is formed initially, followed by an intramolecular exchange of hydrogen and palladium to give a i yW-hydtoxyethylpalladium species that leads to acetaldehyde and metallic palladium (88-90). [Pg.51]

The theoretical explanation of the butane reaction mechanism is as fully developed as is that of acetaldehyde oxidation (51). The theory of the naphtha oxidation reaction is more troublesome, however, and less well understood. This is largely because of a back-biting reaction which leads to cycHc products (52). [Pg.68]

Facial dushing after ingestion of alcohol occurs in up to one-third of patients taking chlorpropamide. The mechanism, like that of the disulfiram reaction, probably involves inhibition of the oxidation of acetaldehyde, a metaboUte of ethanol. The plasma concentration of chlorpropamide may be correlated with chlorpropamide—alcohol dushing. [Pg.342]

A. ot-Chloroelhyl ethyl ether. A mixture of 200 g. (201 ml.) of redistilled paraldehyde, b.p. 121-122.5° (equivalent to 4.54 moles of acetaldehyde), and 200 g. (254 ml., 4.34 moles) of absolute ethanol is placed in a 1-1. three-necked flask fitted with a mechanical stirrer and a gas inlet tube reaching to the bottom of the flask. The mixture is cooled to —5° in a mixture of Dry Ice and acetone, and dry hydrogen chloride (Note 1) is passed into the stirred reaction mixture maintained at about —5° until 200 g. (5.48 moles) has been absorbed. During this operation, which requires about 2 hours, the reaction mixture separates into two layers. The upper layer of crude a-chloroethyl ethyl ether is re-... [Pg.60]

The following mechanism has been postulated for the gas phase decomposition of acetaldehyde ... [Pg.19]

Paraldehyde, a sedative and hypnotic agent, is prepared by treatment of acetaldehyde with an acidic catalyst. Propose a mechanism for the reaction. [Pg.744]

Condensation of 2-aminothiophenol with the /3-chlorocinnamaldehyde in the presence ofp-toluene sulfonic acid (PISA) gave good yield of benzothia-zole (Scheme 14). The mechanism suggested in this work is beUeved to proceed via a nucleophilic attack of the sulfur atom in an addition-ehmination sequence followed by a spontaneous cyclization and ejection of acetaldehyde [15]. These investigations were performed in a domestic microwave reactor and need 1.5 min for completion (65% yield). Here again, oil bath heating seems to be inferior, providing a maximum conversion of 53% after... [Pg.68]

Ethanol is oxidized by alcohol dehydrogenase (in the presence of nicotinamide adenine dinucleotide [NAD]) or the microsomal ethanol oxidizing system (MEOS) (in the presence of reduced nicotinamide adenine dinucleotide phosphate [NADPH]). Acetaldehyde, the first product in ethanol oxidation, is metabolized to acetic acid by aldehyde dehydrogenase in the presence of NAD. Acetic acid is broken down through the citric acid cycle to carbon dioxide (CO2) and water (H2O). Impairment of the metabolism of acetaldehyde to acetic acid is the major mechanism of action of disulfiram for the treatment of alcoholism. [Pg.6]

This agrees with experimental findings on the decomposition of acetaldehyde. The appearance of the three-halves power is a wondrous result of the quasisteady hypothesis. Half-integer kinetics are typical of free-radical systems. Example 2.6 describes a free-radical reaction with an apparent order of one-half, one, or three-halves depending on the termination mechanism. [Pg.53]

The present research was focused on the study of acetaldehyde oxidation rising air with aqueous mangan acetate catalyst in mechanically stirred tank reactor. [Pg.221]

For n-alkanes, n-alcohols, 1-chloroalkanes, n-ethers, and chloroethenes, the carbon chain length influences the reactivity, and the clear linear correlations indicate that the attack mechanism of these pollutants by OH or Cl radicals occurs via the same pathway. However, such correlations do not hold true for aromatics, ketones, and aldehydes, for reasons discussed in our previous paper [3]. We also estimated missing values of kci by analogy for ethylbenzene, we take kci = 1.5e-10 cm molecule S, greater than that for m-xylene, but smaller than the 2.0e-10 cm molecule- s-i value for very reactive compoxmds. Also we estimate a similar value for butyraldehyde kci = le-10 cm molecule- s-, only 10% larger than kci of acetaldehyde to remain consistent with the equivalent koH value. [Pg.439]

Lai SCS, Kleyn SEF, Rosea V, Koper MTM. 2008. Mechanism of the dissociation and electro-oxidation of ethanol and acetaldehyde on platinum as studied by SERS. J Phys Chem C 112 19080-19087. [Pg.203]

Catalytic site of lipase is known to be a serine-residue and lipase-catalyzed reactions are considered to proceed via an acyl-enzyme intermediate. The mechanism of lipase-catalyzed polymerization of divinyl ester and glycol is proposed as follows (Fig. 3). First, the hydroxy group of the serine residue nucleophilically attacks the acyl-carbon of the divinyl ester monomer to produce an acyl-enzyme intermediate involving elimination of acetaldehyde. The reaction of the intermediate with the glycol produces 1 1 adduct of both... [Pg.244]

In contrast to the above, other reactions have been found to require base assistance by water in the rate-determining step, i.e. the water activity does appear in the rate law. The mechanism formulated for the condensation of acetaldehyde in sulfuric acid is given in equation (63), following on from the enolization of Scheme 7, subsequent dehydration to crotonaldehyde occurring as shown in Scheme 8. The ky k2, k3 and k 3 steps shown were all studied.246... [Pg.44]

A possible free-radical chain mechanism for the thermal decomposition of acetaldehyde (to CH4 and CO) is the Rice-Herzfeld mechanism (Laidler and Liu, 1967) ... [Pg.172]

From the mechanism given in problem 7-8 for the decomposition of acetaldehyde, derive a rate law or set of independent rate laws, as appropriate, if H2 and C2Hs are major products (in addition to CH4 and CO). [Pg.172]

Solarization effects on weed population was hypothesized to be due to different mechanisms, such as changes in cell metabolism and ultrastructure (Singla et al. 1997), microbial parasitism on seeds weakened by sublethal temperatures, seed dormancy interruption by raising temperatures, and foliar scorching of weeds under the plastic mulch (Egley 1990 Katan and DeVay 1991). Moreover, imbalance of 02 and C02 or release of acetaldehyde, ethylene, and other volatile toxic compounds were also reported as accounting for weed death (Rubin and Benjamin 1984 Gamliel et al. 2000). [Pg.240]


See other pages where Mechanisms of acetaldehyde is mentioned: [Pg.304]    [Pg.304]    [Pg.296]    [Pg.1630]    [Pg.7]    [Pg.51]    [Pg.221]    [Pg.575]    [Pg.155]    [Pg.238]    [Pg.196]    [Pg.355]    [Pg.445]    [Pg.311]    [Pg.823]    [Pg.17]    [Pg.432]    [Pg.434]    [Pg.103]    [Pg.329]    [Pg.169]    [Pg.173]    [Pg.93]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Acetaldehyde mechanism

© 2024 chempedia.info