Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurement using solvatochromic dyes

The polarity of the solvents is often thought to be influential in selectivity and activity of catalytic processes. The polarity of ILs is difficult to measure. Hydrogen-bond properties have often been described as playing an important role in the structure and properties of these solvents. The polarity of ionic liquids has been measured using solvatochromic dyes [50, 51] (see also Section 5.2.1.2). It is often assumed that the polarity of ionic liquids is much lower than that of water and closer to that of ethanol. However, their ability to undergo multiple solvation interactions with many molecules places them among the most complex solvents [52]. [Pg.419]

The polarity of some l-alkyl-3-methylimidazolium ionic liquids has been determined using the solvatochromic dyes Nile Red and Reichardt s dye [16, 17], Measurements with Nile Red do not give absolute values of polarity but provide a useful scale to estimate the relative polarity of the ionic liquids. Similar measurements have been made using a number of other solvatochromic dyes (dansylamide, pyrene, pyrenecarboxyaldehyde, and bromonapthalene) for [BMIM][PF6], and gave results consistent with those obtained with Nile Red. Values for Ej obtained for ionic liquids generally fall between the values of 0.6 and 1.0, as shown in Table 4.3. [Pg.82]

Nile Red was recently introduced as a solvatochromic dye for studying supercritical fluids (10). Although not ideal, Nile Red does dissolve in both nonpolar and polar fluids and does not lose its color in the presence of acids, like some previously used dyes. Major criticisms of Nile Red include the fact that it measures several different aspects of "polarity" simultaneously (polarizability and acidity (15)) yet it is insensitive to bases (10). However, in chromatography other single dimension polarity scales, like P, are routinely used. Measurements with Nile Red and other dyes indicate that the solvent strength of binary supercritical fluids is often a non-linear function of composition (10-14). For example, small... [Pg.137]

The strong adsorption of PVFA-co-PVAm onto ZnO can be also evidenced by measuring the surface polarity of ZnO/PVFA-co-PVAm composites using co-adsorbed solvatochromic dyes [18], According to earlier studies of silica/PVFA-co-PVAm composites [21,22], we applied a /e/V-buty l substituted Reichardt s dye [19-21] as surface polarity indicator. Employing UV/Vis spectroscopy the absorption maxima Zmax of the adsorbed Reichardt s dye was measured (Fig. 4). Its position is strongly correlated with the surface polarity that can be expressed by the Ej(30) polarity parameters (Eq. 1) [21],... [Pg.114]

The polarities of different solvents can be compared using fluorescence probe molecules or solvatochromic dyes. When such molecules are dissolved in a solvent, the frequency of the maximum fluorescence or absorption, respectively, changes as a function of the polarity of the medium, and this property can then be compared with the result for standard solvents. The polarities of several ionic liquids were estimated using 5-dimethylamino-isoindole-l,3-dione 34 as a fluorescence probe and Reichardt s dye 35 for visible absorbance measurements, allowing the determination of the normalized parameter ( . (tetramethylsilane) = 0,... [Pg.21]

In 1951, Brooker suggested for the first time that solvatochromic dyes could be used to obtain measures of solvent polarity. This author constructed the Xr scale on the basis of the solvatochromism of the merocyanine dye (5), the electronic transition of which gives rise to a charge-transfer fi-om flie amine nitrogen to a carboxamide group at the other end of tire molecule. Hence, the excited status is more dipolar than the ground state, and the resulting band is shifted bathochromically as solvent polarity increases. Xr values reflect the position of the maximum of the first band for the chromophore in kcal mol . [Pg.590]

Table I lists a variety of organic nonlinear materials which have appeared in the literature their relative powder efficiencies, absorption cutoffs and /3 values (if available) are also provided. These materials are "typical" only in that they represent results from the few classes of organic compounds investigated to date, yet they are instructive in that one learns which molecular properties may be important. A few caveats are in order to avoid misinterpretation of the data in Table I. Except for compound 10 (19) all the powder efficiency and cutoff data are from our own measurements. Powder measurements were performed on ungraded samples using the Nd YAG output at 1.06/t as fundamental since powder efficiency is a function of particle size distribution and a variety of other factors (3) these values are only semiquantitative. The cutoff values are the wavelengths for which 10-4M solutions in ethanol (unless otherwise indicated) have no absorbance. The cutoff values will be similar to those found in crystal state except where intermolecular charge transfer is important in the crystal or the molecule is solvatochromic, this latter effect being quite common for cyanine dyes such as... Table I lists a variety of organic nonlinear materials which have appeared in the literature their relative powder efficiencies, absorption cutoffs and /3 values (if available) are also provided. These materials are "typical" only in that they represent results from the few classes of organic compounds investigated to date, yet they are instructive in that one learns which molecular properties may be important. A few caveats are in order to avoid misinterpretation of the data in Table I. Except for compound 10 (19) all the powder efficiency and cutoff data are from our own measurements. Powder measurements were performed on ungraded samples using the Nd YAG output at 1.06/t as fundamental since powder efficiency is a function of particle size distribution and a variety of other factors (3) these values are only semiquantitative. The cutoff values are the wavelengths for which 10-4M solutions in ethanol (unless otherwise indicated) have no absorbance. The cutoff values will be similar to those found in crystal state except where intermolecular charge transfer is important in the crystal or the molecule is solvatochromic, this latter effect being quite common for cyanine dyes such as...
The variations in the absorption energies of various dyes have been used to characterise the polarity of various media and create empirical scales. For this purpose, the most widely used dye is the highly, negatively solvatochromic betaine (1.98), known as Reichardt s dye, whose transition energy f .j,(30) in kcal mol, measured in a particular solvent, characterises the polarity of that solvent. [Pg.67]

The primary standard betaine dye (44) is only sparingly soluble in water and less polar solvents it is insoluble in nonpolar solvents such as aliphatic hydrocarbons. In order to overcome the solubility problems in nonpolar solvents, the more lipophilic penta-t-butyl-substituted betaine dye (45) has additionally been used as a secondary reference probe [174]. The excellent Hnear correlation between the Ej values of the two dyes allows the calculation of t(30) values for solvents in which the solvatochromic indicator dye (44) is not soluble. Introduction of electron-withdrawing substituents e.g. Cl [323], F, CF3, C6F13 [324]) in the betaine molecule reduces the basicity of its phenolate moiety, which allows the direct determination of x(30) values for somewhat more acidic solvents. Moreover, the Hpophilic and fluorophilic penta(trifluoromethyl)-substituted betaine dye (46) is more soluble in nonpolar solvents e.g. hexafluoro-benzene) than the standard dye (44) [324]. Conversely, the solubility in aqueous media can be improved through replacement of some of the peripheral hydrophobic phenyl groups in (44) by more hydrophilic pyridyl groups, to yield the more water-soluble betaine dye (47) [325]. The Ej values of these new secondary standard betaine dyes correlate linearly with the x(30) values of (44), which allows the calculation of x(30) values for solvents in which only betaine dyes (45)-(47) are sufficiently stable and soluble for the UV/Vis spectroscopic measurements [324, 325]. [Pg.417]

In 1994, a review on the further development and improvement of the n scale was given by Laurence, Abboud et al. [227], They redetermined n values for a total of 229 solvents, this time using only two (instead of seven) solvatochromic nitroaromatics as indicator compounds, i.e. 4-nitroanisole and A,A-dimethylamino-4-nitroaniline, for good reasons see later and reference [227] for a more detailed discussion. A thermodynamic analysis of the n scale [and the t(30) scale] has been reported by Matyushov et al. [228]. Using six novel diaza merocyanine dyes of the type R-N=N-R (R = N-methylpyridinium-4-yl or A-methylbenzothiazolium-2-yl, and R = 2,6-disubstituted 4-phenolates or 2-naphtholate) instead of nitroaromatics as positively solvatochromic probe compounds, an analogous n azo scale was developed by Buncel et al., which correlates reasonable well with the n scale, but has some advantages for a detailed discussion, see references [333], Another n scale, based solely on naphthalene, anthracene, and y9-carotene, was constructed by Abe [338], n values are mixed solvent parameters, measuring the solvent dipolarity and polarizability. The differences in the various n scales are caused by the different mixture of dipolarity and polarizability measured by the respective indicator. The n scale of Abe is practically independent of the solvent dipolarity, whereas Kamlet-Taft s n and Buncel s n azo reflect different contributions of both solvent dipolarity and polarizability. [Pg.432]


See other pages where Measurement using solvatochromic dyes is mentioned: [Pg.18]    [Pg.18]    [Pg.171]    [Pg.137]    [Pg.47]    [Pg.17]    [Pg.323]    [Pg.4573]    [Pg.4105]    [Pg.19]    [Pg.228]    [Pg.138]    [Pg.22]    [Pg.18]    [Pg.121]    [Pg.18]    [Pg.16]    [Pg.361]    [Pg.480]    [Pg.265]    [Pg.1601]    [Pg.275]    [Pg.682]    [Pg.133]    [Pg.119]    [Pg.96]    [Pg.147]    [Pg.19]    [Pg.24]    [Pg.10]    [Pg.96]    [Pg.65]    [Pg.219]    [Pg.347]    [Pg.23]    [Pg.412]    [Pg.434]    [Pg.439]   
See also in sourсe #XX -- [ Pg.133 , Pg.134 ]




SEARCH



Dyes, use

Solvatochromic

Solvatochromic measures

Solvatochromicity

Solvatochromism

Solvatochromisms

© 2024 chempedia.info