Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mean spherical approximation solution

The EMSA requires the degree of dimerization A as an input parameter. This is quite disappointing. However, it ehminates the deficiency of the Percus-Yevick approximation, Eq. (38). The EMSA represents a simpHfied version, to obtain an analytic solution, of a more sophisticated site-site extended mean spherical approximation (SSEMSA) [67-69]. The results of the aforementioned closures can be used as an input for subsequent calculations of the structure of nonuniform associating fluids. [Pg.180]

Recent developments of the chemical model of electrolyte solutions permit the extension of the validity range of transport equations up to high concentrations (c 1 mol L"1) and permit the representation of the conductivity maximum Knm in the framework of the mean spherical approximation (MSA) theory with the help of association constant KA and ionic distance parameter a, see Ref. [87] and the literature quoted there in. [Pg.486]

Carnie and Chan and Blum and Henderson have calculated the capacitance for an idealized model of an electrified interface using the mean spherical approximation (MSA). The interface is considered to consist of a solution of charged hard spheres in a solvent of hard spheres with embedded point dipoles, while the electrode is considered to be a uniformly charged hard wall whose dielectric constant is equal to that of the electrolyte (so that image forces need not be considered). [Pg.54]

This was averaged over the total distribution of ionic and dipolar spheres in the solution phase. Parameters in the calculations were chosen to simulate the Hg/DMSO and Ga/DMSO interfaces, since the mean-spherical approximation, used for the charge and dipole distributions in the solution, is not suited to describe hydrogen-bonded solvents. Some parameters still had to be chosen arbitrarily. It was found that the calculated capacitance depended crucially on d, the metal-solution distance. However, the capacitance was always greater for Ga than for Hg, partly because of the different electron densities on the two metals and partly because d depends on the crystallographic radius. The importance of d is specific to these models, because the solution is supposed (perhaps incorrectly see above) to begin at some distance away from the jellium edge. [Pg.83]

The long-range electrostatic term is expressed by mean spherical approximations which is a very promising method for describing the thermodynamic properties of electrolyte solutions [192,193] ... [Pg.156]

Considerable progress has been made in going beyond the simple Debye continuum model. Non-Debye relaxation solvents have been considered. Solvents with nonuniform dielectric properties, and translational diffusion have been analyzed. This is discussed in Section II. Furthermore, models which mimic microscopic solute/solvent structure (such as the linearized mean spherical approximation), but still allow for analytical evaluation have been extensively explored [38, 41-43], Finally, detailed molecular dynamics calculations have been made on the solvation of water [57, 58, 71]. [Pg.6]

An important advance in the understanding of microscopic solvation and Onsager s snowball picture has recently been made through the introduction of the linearized mean spherical approximation (MSA) model for the solvation dynamics around ionic and dipolar solutes. The first model of this type was introduced by Wolynes who extended the equilibrium linearized microscopic theory of solvation to handle dynamic solvation [38]. Wolynes further demonstrated that approximate solutions to the new dynamic MSA model were in accord with Onsager s predictions. Subsequently, Rips, Klafter, and Jortner published an exact solution for the solvation dynamics within the framework of the MSA [43], For an ionic solute, the exact results from these author s calculations are in agreement with Onsager s inverted snowball model and the previous numerical calculations of Calef and Wolynes [37]. Recently, the MSA model has been extended by Nichols and Calef and Rips et al. [39-43] to solvation of a dipolar solute. [Pg.35]

In the mean spherical approximation (MSA) treatment of the ion association in aqueous solutions, the linearity of the relative permittivity and of the hydrated cation diameters with the electrolyte concentration was taken into account and a good fit of the experimental activity and osmotic coefficient was obtained [72-75]. The MSA model was elaborated on the basis of cluster expansion considerations involving the direct correlation function the treatment can deal with the many-body interaction term and with a screening parameter and proved expedient for the interpretation of experimental results concerning inorganic electrolyte solutions [67,75-77]. [Pg.16]

Simonin, J.P., Bernard, O., and Blum, L. Real ionic solutions in the mean spherical approximation 3 osmotic and activity coefficients for associating electrolytes in the primitive model. 7. Phys. Chem.B. 1998, 102,4411 417. [Pg.25]

Modem theoretical work on solution properties often involves the use of mean spherical approximation, or MSA. This refers to models of events in solution in which relatively simple properties are assumed for the real entities present so that the mathematics can be solved analytically and the answer obtained in terms of an analytical solution rather than from a computer program. Thus, it is assumed that the ions concerned are spherical and incompressible. Reality is more complex than that implied by the SE approximations, but they nevertheless provide a rapid way to obtain experimentally consistent answers. [Pg.41]

HOW FAR HAS THE MEAN SPHERICAL APPROXIMATION GONE IN THE DEVELOPMENT OF ESTIMATION OF PROPERTIES FOR ELECTROLYTE SOLUTIONS ... [Pg.326]

The latest models propose to represent electrolyte solutions as a collections of hard spheres of equal size, ions, immersed in a dielectric continuum, the solvent. For such a system, what is called the Mean Spherical Approximation, MSA, has been successful in estimating osmotic and mean activity coefficients for aqueous 1 1 electrolyte solutions, and has provided a reasonable fit to experimental data for dilute solutions of concentrations up to -0.3 mol dm". The advantage in this approach is that only one... [Pg.326]

In addition to the short-range interactions between species in all solutions, long-range electrostatic interactions are found in electrolyte solutions. The deviation from ideal solution behavior caused by these electrostatic forces is usually calculated by some variation of the Debye-Huckel theory or the mean spherical approximation (MSA). These theories do not include terms for the short-range attractive and repulsive forces in the mixtures and are therefore usually combined with activity coefficient models or equations of state in order to describe the properties of electrolyte solutions. [Pg.221]

Abstract Analytical solution of the associative mean spherical approximation (AMSA) and the modified version of the mean spherical approximation - the mass action law (MSA-MAL) approach for ion and ion-dipole models are used to revise the concept of ion association in the theory of electrolyte solutions. In the considered approach in contrast to the traditional one both free and associated ion electrostatic contributions are taken into account and therefore the revised version of ion association concept is correct for weak and strong regimes of ion association. It is shown that AMSA theory is more preferable for the description of thermodynamic properties while the modified version of the MSA-MAL theory is more useful for the description of electrical properties. The capabilities of the developed approaches are illustrated by the description of thermodynamic and transport properties of electrolyte solutions in weakly polar solvents. The proposed theory is applied to explain the anomalous properties of electrical double layer in a low temperature region and for the treatment of the effect of electrolyte on the rate of intramolecular electron transfer. The revised concept of ion association is also used to describe the concentration dependence of dielectric constant in electrolyte solutions. [Pg.45]

Keywords Electrolyte solutions, ion association, associative mean spherical approximation,... [Pg.45]

Protsykevytch, I.A., Kalyuzhnyi, Yu.V., Holovko, M.F., and Blum, L. Solution of the polymer mean spherical approximation for the totally flexible sticky two-point electrolyte model. Journal of Molecular Physics, 1997, 73, No. 4, p. 1-20. [Pg.227]

Sanchez-Castro, C., and Blum, L. Explicit approximation for the unrestricted mean spherical approximation for ionic-solutions. Journal of Physical Chemistry, 1989, 93, No. 21, p. 7478-7482. [Pg.228]

Two points should be mentioned here. First, the effect of solutes on the solvent dielectric response can be important in solvents with nonlocal dielectric properties. In principle, this problem can be handled by measuring the spectrum of the whole system, the solvent plus the solutes. Theoretically, the spatial dependence of the dielectric response function, s(r, co), which includes the molecular nature of the solvent, is often treated by using the dynamical mean spherical approximation [28, 36a, 147a, 193-195]. A more advanced approach is based on a molecular hydrodynamic theory [104,191, 196, 197]. These theoretical developments have provided much physical insight into solvation dynamics. However, reasonable agreement between the experimentally measured Stokes shift and emission line shape can be... [Pg.520]

L. Blum, Solution of a model for the solvent-electrrrfyte interactions in the mean spherical approximation, /. Chem. Phys. 61,2129-2133 (1974). [Pg.83]


See other pages where Mean spherical approximation solution is mentioned: [Pg.238]    [Pg.201]    [Pg.173]    [Pg.16]    [Pg.637]    [Pg.644]    [Pg.169]    [Pg.98]    [Pg.322]    [Pg.298]    [Pg.98]    [Pg.21]    [Pg.151]    [Pg.106]    [Pg.478]    [Pg.13]    [Pg.640]    [Pg.85]    [Pg.171]    [Pg.172]    [Pg.199]    [Pg.102]    [Pg.511]    [Pg.133]    [Pg.684]    [Pg.133]   


SEARCH



Approximate solution

Mean spherical approximation

Spherical approximation

Spherical solution

© 2024 chempedia.info