Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer models penetration theory

In this investigation we carried out experiments with simultaneous absorption of H2S and CO2 into aqueous 2.0 M diisopropanol-amine (DIPA) solutions at 25 °C. The results are evaluated by means of our mathematical mass transfer model both in penetration and film theory form. The latter version has been derived from the penetration theory mass transfer model [5],... [Pg.378]

The mass transfer model. In our previous work [6] the mass transfer model equations and their mathematical treatment have been described extensively. The relevant differential equations, describing the process of liquid-phase diffusion and simultaneous reactions of the species according to the penetration theory, are summarized in table 1. Recently we derived from this penetration theory description a film model version, which is incorporated in the evaluation of the experimental results. Details on the film model version are given elsewhere [5]. [Pg.379]

Penetration theory equations for the mass transfer model (boundary conditions as usual in penetration theory [6 ]). ... [Pg.380]

The fundamental principles of the gas-to-liquid mass transfer were concisely presented. The basic mass transfer mechanisms described in the three major mass transfer models the film theory, the penetration theory, and the surface renewal theory are of help in explaining the mass transport process between the gas phase and the liquid phase. Using these theories, the controlling factors of the mass transfer process can be identified and manipulated to improve the performance of the unit operations utilizing the gas-to-liquid mass transfer process. The relevant unit operations, namely gas absorption column, three-phase fluidized bed reactor, airlift reactor, liquid-gas bubble reactor, and trickled bed reactor were reviewed in this entry. [Pg.1173]

In Chapter 7 we define mass transfer coefficients for binary and multicomponent systems. In subsequent chapters we develop mass transfer models to determine these coefficients. Many different models have been proposed over the years. The oldest and simplest model is the film model this is the most useful model for describing multicomponent mass transfer (Chapter 8). Empirical methods are also considered. Following our discussions of film theory, we describe the so-called surface renewal or penetration models of mass transfer (Chapter 9) and go on to develop turbulent eddy diffusivity based models (Chapter 10). Simultaneous mass and energy transport is considered in Chapter 11. [Pg.140]

The addition of various surfactants and micelle forming agents on the biphasic hydroformylation of olefins was also considered as a tool for enhancement of the reaction rate. The relation between the extent of emulsification of the reaction mixture and the performance of hydroformylation reaction was also investigated. Mass transfer effects in biphasic hydroformylation of 1-octene in the presence of cetyltri-methylammoniumbromide (CTAB), was studied by Lekhal etal. [33], A mass-transfer model based on the Higbie s penetration theory was proposed to predict the rate of hydroformylation in a heterogeneous gas-liquid-liquid system under... [Pg.372]

Huang and Kuo also solved two equations for a rapid first-order reversible reaction (i.e., equilibrium in the bulk liquid). The solutions are extremely lengthy and will not be given here. From a comparison of the film, surface renewal, and intermediate film-penetration theories it was found that for irreversible and reversible reactions with equal diffusivities of reactant and product, the enhancement factor was insensitive to the mass transfer model. For reversible reactions with product diffusivity smaller than that of the reactant, the enhancement factor can differ by a factor of two between the extremes of film and surface renewal theory. To conclude, it would seem that the choice of the model matters little for design calculations the predicted differences are negligible with respect to the uncertainties of prediction of some of the model or operation parameters. [Pg.335]

In this chapter, fluid-fluid flow patterns and mass transfer in microstructured devices are discussed. The first part is a brief discussion of conventionai fluid-fluid reactors with their advantages and disadvantages. Further, the ciassi-flcation of fluid-fluid microstructured reactors is presented. In order to obtain generic understanding of hydrodynamics, mass transfer, and chemical reaction, dimensionless parameters and design criteria are proposed. The conventional mass transfer models such as penetration and film theory as well as empirical correlations are then discussed. Finally, literature data on mass transfer efficiency at different flow regimes and proposed empirical correlations as well as important hydrodynamic design parameters are presented. [Pg.267]

Unlike for gas- liquid systems, no efforts have been made to develop mass transfer models based on either film or penetration theory for liquid-liquid MSR. The... [Pg.298]

Van Baten and Krishna [41] performed a computational fluid dynamics (CFD) study of gas absorption in Taylor flow and found that in some of the experiments of Bercic and Pintar the contact time in the film was indeed long enough to saturate the liquid film fully. For shorter unit cells (or higher velocities), they formulated a mass transfer model of penetration theory for both the caps and the film... [Pg.312]

The problem of formulating a mass transfer model can now be reduced to the problem of formulating a model that predicts the average slug concentration. Using penetration theory for the caps, it can be shown that... [Pg.316]

The mass transfer model is based on a physical picture of surface renewal that was developed for describing mass transfer across mobile interfaces. The mass transfer coefficient is then based on the theory for non-steady state diffusion. For relatively short periods of time, the time dependent mass transfer coefficient, according to the penetration theory follows from (see also section 4.62,1)... [Pg.77]

Other Models for Mass Transfer. In contrast to the film theory, other approaches assume that transfer of material does not occur by steady-state diffusion. Rather there are large fluid motions which constantiy bring fresh masses of bulk material into direct contact with the interface. According to the penetration theory (33), diffusion proceeds from the interface into the particular element of fluid in contact with the interface. This is an unsteady state, transient process where the rate decreases with time. After a while, the element is replaced by a fresh one brought to the interface by the relative movements of gas and Uquid, and the process is repeated. In order to evaluate a constant average contact time T for the individual fluid elements is assumed (33). This leads to relations such as... [Pg.23]

HARRIOTT 25 suggested that, as a result of the effects of interfaeial tension, the layers of fluid in the immediate vicinity of the interface would frequently be unaffected by the mixing process postulated in the penetration theory. There would then be a thin laminar layer unaffected by the mixing process and offering a constant resistance to mass transfer. The overall resistance may be calculated in a manner similar to that used in the previous section where the total resistance to transfer was made up of two components—a Him resistance in one phase and a penetration model resistance in the other. It is necessary in equation 10.132 to put the Henry s law constant equal to unity and the diffusivity Df in the film equal to that in the remainder of the fluid D. The driving force is then CAi — CAo in place of C Ao — JPCAo, and the mass transfer rate at time t is given for a film thickness L by ... [Pg.613]

Kishinev ski/23 has developed a model for mass transfer across an interface in which molecular diffusion is assumed to play no part. In this, fresh material is continuously brought to the interface as a result of turbulence within the fluid and, after exposure to the second phase, the fluid element attains equilibrium with it and then becomes mixed again with the bulk of the phase. The model thus presupposes surface renewal without penetration by diffusion and therefore the effect of diffusivity should not be important. No reliable experimental results are available to test the theory adequately. [Pg.618]

In a process where mass transfer takes place across a phase boundary, the same theoretical approach can be applied to each of the phases, though it does not follow that the same theory is best applied to both phases. For example, the film model might be applicable to one phase and the penetration model to the other. This problem is discussed in the previous section. [Pg.619]

Given that, from the penetration theory for mass transfer across an interface, the instantaneous rale ol mass transfer is inversely proportional to the square root of the time of exposure, obtain a relationship between exposure lime in the Higbie mode and surface renewal rate in the Danckwerts model which will give the same average mass transfer rate. The age distribution function and average mass transfer rate from the Danckwerts theory must be deri ved from first principles. [Pg.857]

In calculating Ihe mass transfer rate from the penetration theory, two models for the age distribution of the surface elements are commonly used — those due to Higbie and to Danckwerts, Explain the difference between the two models and give examples of situations in which each of them would be appropriate. [Pg.857]

In the Danckwerts model, it is assumed that elements of the surface have an age distribution ranging from zero to infinity. Obtain the age distribution function for this model and apply it to obtain the average, mass Iransfer coefficient at the surface, given that from the penetration theory the mass transfer coefficient for surface of age t is VlD/(7rt, where D is the diffusivity. [Pg.857]

It may be assumed that the penetration model may be used to represent the mass transfer process. The depth of penetration is small compared with the radius of the droplets and the effects of surface curvature may he neglected. From the penetration theory, the concentration C, at a depth y below the surface at time r is given by ... [Pg.860]

The experimental results imply that the main reaction (eq. 1) is an equilibrium reaction and first order in nitrogen monoxide and iron chelate. The equilibrium constants at various temperatures were determined by modeling the experimental NO absorption profile using the penetration theory for mass transfer. Parameter estimation using well established numerical methods (Newton-Raphson) allowed detrxmination of the equilibrium constant (Fig. 1) as well as the ratio of the diffusion coefficients of Fe"(EDTA) andNO[3]. [Pg.794]

On the basis of the simplified view of the flow patterns just described, a model for predicting mass transfer rates can be developed using penetration theory and the fact that mass is transferred simultaneously from both the nip and the wiped film. We can therefore write that the total molar mass transfer rate from an element of fluid over a length dk in the extruder is... [Pg.69]

Penetration theory (Higbie, 1935)assumes that turbulent eddies travel from the bulk of the phase to the interface where they remain for a constant exposure time te. The solute is assumed to penetrate into a given eddy during its stay at the interface by a process of unsteady-state molecular diffusion. This model predicts that the mass-transfer coefficient is directly proportional to the square root of molecular diffusivity... [Pg.228]

In most common separation processes, the main mass transfer is across an interface between a gas and a liquid or between two liquid phases. At fluid-fluid interfaces, turbulence may persist to the interface. A simple theoretical model for turbulent mass transfer to or from a fluid-phase boundary was suggested in 1904 by Nernst, who postulated that the entire resistance to mass transfer in a given turbulent phase lies in a thin, stagnant region of that phase at the interface, called a him, hence the name film theory.2 4,5 Other, more detailed, theories for describing the mass transfer through a fluid-fluid interface exist, such as the penetration theory.1,4... [Pg.156]

The mass-transfer coefficient in each film is expected to depend upon molecular diffusivity, and this behavior often is represented by a power-law function k . For two-film theory, n = 1 as discussed above [(Eq. (15-62)]. Subsequent theories introduced by Higbie [Trans. AIChE, 31, p. 365 (1935)] and by Dankwerts [Ind. Eng. Chem., 43, pp. 1460-1467 (1951)] allow for surface renewal or penetration of the stagnant film. These theories indicate a 0.5 power-law relationship. Numerous models have been developed since then where 0.5 < n < 1.0 the results depend upon such things as whether the dispersed drop is treated as a rigid sphere, as a sphere with internal circulation, or as oscillating drops. These theories are discussed by Skelland [ Tnterphase Mass Transfer, Chap. 2 in Science and Practice of Liquid-Liquid Extraction, vol. 1, Thornton, ed. (Oxford, 1992)]. [Pg.1734]

These values are within 5% of the values calculated with the penetration theory correction factor matrix and support our earlier suggestion that it is sufficient to use the simpler film model correction factor matrix in multicomponent mass transfer calculations at high mass transfer rates. ... [Pg.235]

The results showed that mass transfer through the gas-side boundary layer could be described by the penetration theory (Hygbie 1935) or by the surface renewal model (Danckwerts 1951). It was found that ... [Pg.160]


See other pages where Mass transfer models penetration theory is mentioned: [Pg.23]    [Pg.23]    [Pg.252]    [Pg.339]    [Pg.79]    [Pg.303]    [Pg.55]    [Pg.56]    [Pg.55]    [Pg.72]    [Pg.255]    [Pg.235]    [Pg.616]    [Pg.157]   
See also in sourсe #XX -- [ Pg.615 ]




SEARCH



Mass models

Mass penetration

Mass penetration model

Mass penetration theory

Mass theory

Mass transfer models

Mass transfer penetration theory

Mass transfer theory

Model theory

Penetration theory

Theory transfer

Transfer model

© 2024 chempedia.info