Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer catalytic reaction mechanism

Many operations in chemical engineering require the contact of two liquid phases between which mass and heat transfer with reaction occurs. Examples are hydrometallurgical solvent extraction, nitrations and halogenations of hydrocarbons, hydrodesulfurization of crude stocks, emulsion polymerizations, hydrocarbon fermentations for single-cell proteins, glycerolysis of fats, and phase-transfer catalytic reactions. A most common method of bringing about the contact of the two phases is to disperse droplets of one within the other by mechanical agitation. [Pg.200]

Phase-transfer catalysis (PTC) is the most widely synthesized method for solving the problem of the mutual insolubility of nonpolar and ionic compounds. The liquid-solid-liquid phase-transfer catalysis (LSLPTC) can overcome the purification of product and the separation of reactant and catalyst in the liquid-liquid phase-transfer catalytic reaction. The main structure of LSLPTC discussed in this study was focused the quaternary ammonium poly(mcthylstyrene-resin system. The reaction mechanism, catalytic activity, characterization of catalyst, theoretical modeling, mass transfers of reactant and pnxluct. and reactor design of LSLPTC were investigated. [Pg.1]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

The effect of the volume and the surface catalytic reaction is sketched in Figs. 2.80 and 2.81, respectively. Obviously, the voltammetric behavior of the mechanism (2.188) is substantially different compared to the simple catalytic reaction described in Sect. 2.4.4. In the current mechanism, the effect of the volume catalytic reaction is remarkably different to the surface catalytic reaction, revealing that SWV can discriminate between the volume and the surface follow-up chemical reactions. The extremely high maxima shown in Fig. 2.81 correspond to the exhaustive reuse of the electroactive material adsorbed on the electrode surface, as a consequence of the synchronization of the surface catalytic reaction rate, adsorption equilibria, mass transfer rate of the electroactive species, and duration of the SW potential pulses. These results clearly reveal how powerful square-wave voltammetry is for analytical purposes when a moderate adsorption is combined with a catalytic regeneration of the electroactive material. This is also illustrated by a comparative analysis of the mechanism (2.188) with the simple surface catalytic reaction (Sect. 2.5.3) and the simple catalytic reaction of a dissolved redox couple (Sect. 2.4.4), given in Fig. 2.82. [Pg.118]

For liquid-phase catalytic or enzymatic reactions, catalysts or enzymes are used as homogeneous solutes in the hquid, or as sohd particles suspended in the hquid phase. In the latter case, (i) the particles per se may be catalysts (ii) the catalysts or enzymes are uniformly distributed within inert particles or (hi) the catalysts or enzymes exist at the surface of pores, inside the particles. In such heterogeneous catalytic or enzymatic systems, a variety of factors that include the mass transfer of reactants and products, heat effects accompanying the reactions, and/or some surface phenomena, may affect the apparent reaction rates. For example, in situation (iii) above, the reactants must move to the catalytic reaction sites within catalyst particles by various mechanisms of diffusion through the pores. In general, the apparent rates of reactions with catalyst or enzymatic particles are lower than the intrinsic reaction rates this is due to the various mass transfer resistances, as is discussed below. [Pg.102]

In these electrode processes, the use of macroelectrodes is recommended when the homogeneous kinetics is slow in order to achieve a commitment between the diffusive and chemical rates. When the chemical kinetics is very fast with respect to the mass transport and macroelectrodes are employed, the electrochemical response is insensitive to the homogeneous kinetics of the chemical reactions—except for first-order catalytic reactions and irreversible chemical reactions follow up the electron transfer—because the reaction layer becomes negligible compared with the diffusion layer. Under the above conditions, the equilibria behave as fully labile and it can be supposed that they are maintained at any point in the solution at any time and at any applied potential pulse. This means an independent of time (stationary) response cannot be obtained at planar electrodes except in the case of a first-order catalytic mechanism. Under these conditions, the use of microelectrodes is recommended to determine large rate constants. However, there is a range of microelectrode radii with which a kinetic-dependent stationary response is obtained beyond the upper limit, a transient response is recorded, whereas beyond the lower limit, the steady-state response is insensitive to the chemical kinetics because the kinetic contribution is masked by the diffusion mass transport. In the case of spherical microelectrodes, the lower limit corresponds to the situation where the reaction layer thickness does not exceed 80 % of the diffusion layer thickness. [Pg.391]

The effects of the catalytic reaction on the CV curve are related to the value of dimensionless parameter A in whose expressions appear variables related to the chemical reaction and also to the geometry of the diffusion field. For small values of A, the surface concentration of species C is scarcely affected by the catalysis for any value of the electrode radius, such that r)7,> —> c c and the current becomes identical to that corresponding to a pseudo-first-order catalytic mechanism (see Eq. (6.203)). In contrast, for high values of A and f —> 1 (cathodic limit), the rate-determining step of the process is the mass transport. In this case, the catalytic limiting current coincides with that obtained for a simple charge transfer process. [Pg.458]

We have used CO oxidation on Pt to illustrate the evolution of models applied to interpret critical effects in catalytic oxidation reactions. All the above models use concepts concerning the complex detailed mechanism. But, as has been shown previously, critical. effects in oxidation reactions were studied as early as the 1930s. For their interpretation primary attention is paid to the interaction of kinetic dependences with the heat-and-mass transfer law [146], It is likely that in these cases there is still more variety in dynamic behaviour than when we deal with purely kinetic factors. A theory for the non-isothermal continuous stirred tank reactor for first-order reactions was suggested in refs. 152-155. The dynamics of CO oxidation in non-isothermal, in particular adiabatic, reactors has been studied [77-80, 155]. A sufficiently complex dynamic behaviour is also observed in isothermal reactors for CO oxidation by taking into account the diffusion both in pores [71, 147-149] and on the surfaces of catalyst [201, 202]. The simplest model accounting for the combination of kinetic and transport processes is an isothermal continuously stirred tank reactor (CSTR). It was Matsuura and Kato [157] who first showed that if the kinetic curve has a maximum peak (this curve is also obtained for CO oxidation [158]), then the isothermal CSTR can have several steady states (see also ref. 203). Recently several authors [3, 76, 118, 156, 159, 160] have applied CSTR models corresponding to the detailed mechanism of catalytic reactions. [Pg.269]

The mass transfer equation is written in terms of the usual assumptions. However, it must be considered that because the concentration of the more abundant species in the flowing gas mixture (air), as well as its temperature, are constant, all the physical properties may be considered constant. The only species that changes its concentration along the reactor in measurable values is PCE. Therefore, the radial diffusion can be calculated as that of PCE in a more concentrated component, the air. This will be the governing mass transfer mechanism of PCE from the bulk of the gas stream to the catalytic boundaries and of the reaction products in the opposite direction. Since the concentrations of nitrogen and oxygen are in large excess they will not be subjected to mass transfer limitations. The reaction is assumed to occur at the catalytic wall with no contributions from the bulk of the system. Then the mass balance at any point of the reactor is... [Pg.245]


See other pages where Mass transfer catalytic reaction mechanism is mentioned: [Pg.249]    [Pg.446]    [Pg.26]    [Pg.236]    [Pg.396]    [Pg.859]    [Pg.500]    [Pg.249]    [Pg.265]    [Pg.480]    [Pg.504]    [Pg.229]    [Pg.281]    [Pg.499]    [Pg.1]    [Pg.197]    [Pg.387]    [Pg.366]    [Pg.349]    [Pg.49]    [Pg.100]    [Pg.265]    [Pg.504]    [Pg.550]    [Pg.293]    [Pg.417]    [Pg.230]    [Pg.83]    [Pg.499]    [Pg.182]    [Pg.277]    [Pg.185]    [Pg.480]    [Pg.364]    [Pg.265]    [Pg.315]    [Pg.147]    [Pg.148]    [Pg.4]    [Pg.205]    [Pg.737]   
See also in sourсe #XX -- [ Pg.236 , Pg.237 ]




SEARCH



Catalytic mechanism

Catalytic reaction mechanism

Mass transfer reaction

Transfer mechanism

© 2024 chempedia.info