Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry spectrometers

ICP-MS Inductively coupled plasma - mass spectrometry/spectrometer... [Pg.425]

This technique offers excellent chromatographic resolution and very low detection thresholds. It is generally coupled with mass spectrometry. Spectrometers using time-of-flight analyzers (refer to Chapter 4) are particularly efficient in this context. [Pg.15]

Before ehding this presentation on mass spectrometry, we should cite the existence of spectrometers for which the method of sorting ions coming from the source is different from the magnetic sector. These are mainly quadripolar analyzers and, to a lesser degree, analyzers measuring the ion s time of flight. [Pg.53]

Ions are also used to initiate secondary ion mass spectrometry (SIMS) [ ], as described in section BI.25.3. In SIMS, the ions sputtered from the surface are measured with a mass spectrometer. SIMS provides an accurate measure of the surface composition with extremely good sensitivity. SIMS can be collected in the static mode in which the surface is only minimally disrupted, or in the dynamic mode in which material is removed so that the composition can be detemiined as a fiinction of depth below the surface. SIMS has also been used along with a shadow and blocking cone analysis as a probe of surface structure [70]. [Pg.310]

Although GGMS is the most widely used ana lytical method that combines a chromatographic sep aration with the identification power of mass spectrometry it is not the only one Chemists have coupled mass spectrometers to most of the mstru ments that are used to separate mixtures Perhaps the ultimate is mass spectrometry/mass spectrome try (MS/MS) m which one mass spectrometer gener ates and separates the molecular ions of the components of a mixture and a second mass spec trometer examines their fragmentation patterns ... [Pg.573]

The advent of atmospheric-pressure ionization (API) provided a method of ionizing labile and nonvolatile substances so that they could be examined by mass spectrometry. API has become strongly linked to HPLC as a basis for ionizing the eluant on its way into the mass spectrometer, although it is also used as a stand-alone inlet for introduction of samples. API is important in thermospray, plasmaspray, and electrospray ionization (see Chapters 8 and 11). [Pg.61]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

The basic principles of fast-atom bombardment (FAB) and liquid-phase secondary ion mass spectrometry (LSIMS) are discussed only briefly here because a fuller description appears in Chapter 4. This chapter focuses on the use of FAB/LSIMS as part of an interface between a liquid chromatograph (LC) and a mass spectrometer (MS), although some theory is presented. [Pg.81]

If a sample solution is introduced into the center of the plasma, the constituent molecules are bombarded by the energetic atoms, ions, electrons, and even photons from the plasma itself. Under these vigorous conditions, sample molecules are both ionized and fragmented repeatedly until only their constituent elemental atoms or ions survive. The ions are drawn off into a mass analyzer for measurement of abundances and mJz values. Plasma torches provide a powerful method for introducing and ionizing a wide range of sample types into a mass spectrometer (inductively coupled plasma mass spectrometry, ICP/MS). [Pg.87]

An AutoSpec-TOF mass spectrometer has a magnetic sector and an electron multiplier ion detector for carrying out one type of mass spectrometry plus a TOF analyzer with a microchannel plate multipoint ion collector for another type of mass spectrometry. Either analyzer can be used separately, or the two can be run in tandem (Figure 20.4). [Pg.154]

Until 1981, mass spectrometry was limited, generally, to the analysis of volatile, relatively low-molecular-mass samples and was difficult to apply to nonvolatile peptides and proteins without first cutting them chemically into smaller volatile segments. During the past decade, the situation has changed radically with the advent of new ionization techniques and the development of tandem mass spectrometry. Now, the mass spectrometer has a well-deserved place in any laboratory interested in the analysis of peptides and proteins. [Pg.287]

A common mistake for beginners in mass spectrometry is to confuse average atomic mass and isotopic mass. For example, the average atomic mass for chlorine is close to 35.45, but this average is of the numbers and masses of Cl and Cl isotopes. This average must be used for instruments that cannot differentiate isotopes (for example, gravimetric balances). Mass spectrometers do differentiate isotopes by mass, so it is important in mass spectrometry that isotopic masses be used... [Pg.348]

In many applications of mass spectrometry, it is necessary to obtain a mass spectrum from a sample dissolved in a solvent. The solution cannot be passed directly into the mass spectrometer because, in the high vacuum, the rapidly vaporizing solvent would entail a large pressure increase, causing the instrument to shut down. [Pg.389]

Liquid chromatography/mass spectrometry (LC/MS) is an analytical technique combining the advantages of an LC instrument with those of a mass spectrometer. [Pg.415]

The three isotopes of hydrogen are almost indistinguishable for most chemical purposes, but a mass Spectrometer can see them as three different entities of mass 1, 2, and 3 Da. Isotopes of other elements can also be distinguished. Mass spectrometry is important for its ability to separate the isotopes of elements. [Pg.423]

A few natural isotopes are radioactive. Of the three isotopes of hydrogen, only that of mass 3 (tritium) i.s radioactive. Radioactive isotopes can be examined by other instrumental means than mass spectrometry, but these other means cannot see the nonradioactive isotopes and are not as versatile as a mass Spectrometer. [Pg.423]


See other pages where Mass spectrometry spectrometers is mentioned: [Pg.208]    [Pg.686]    [Pg.208]    [Pg.686]    [Pg.1330]    [Pg.1331]    [Pg.1355]    [Pg.573]    [Pg.586]    [Pg.55]    [Pg.61]    [Pg.77]    [Pg.134]    [Pg.160]    [Pg.195]    [Pg.226]    [Pg.245]    [Pg.275]    [Pg.275]    [Pg.277]    [Pg.277]    [Pg.277]    [Pg.353]    [Pg.475]    [Pg.476]    [Pg.478]    [Pg.484]    [Pg.521]    [Pg.596]    [Pg.69]    [Pg.418]    [Pg.201]   
See also in sourсe #XX -- [ Pg.57 , Pg.312 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.294 ]

See also in sourсe #XX -- [ Pg.38 , Pg.43 ]




SEARCH



Mass spectrometry spectrometer diagram

Mass spectrometry spectrometer types

Spectrometer Spectrometry

Tandem mass spectrometry/spectrometer

© 2024 chempedia.info