Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry nomenclature

Isopropyl group (Section 2 13) The group (CH3)2CH— Isotactic polymer (Section 7 15) A stereoregular polymer in which the substituent at each successive chirality center is on the same side of the zigzag carbon chain Isotopic cluster (Section 13 22) In mass spectrometry a group of peaks that differ in m/z because they incorporate differ ent isotopes of their component elements lUPAC nomenclature (Section 2 11) The most widely used method of naming organic compounds It uses a set of rules proposed and periodically revised by the International Union of Pure and Applied Chemistry... [Pg.1287]

Table 5.5 Nomenclature of the ions formed in the mass spectral fragmentation of polypeptides. From Chapman, J. R. (Ed.), Protein and Peptide Analysis by Mass Spectrometry, Methods in Molecular Biology, Vol. 61, 1996. Reproduced by permission of Humana Press, Inc. [Pg.210]

Figure 5.64 LC-UV and LC-MS-MS (multiple-reaction monitoring (MRM)) traces from the analysis of a synthetic mixture of four native and five oxidized deoxynucleosides (for nomenclature, see text). Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromalography-landem mass speclrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F., Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyrighl 2000 by Ihe American Society for Mass Spectrometry. Figure 5.64 LC-UV and LC-MS-MS (multiple-reaction monitoring (MRM)) traces from the analysis of a synthetic mixture of four native and five oxidized deoxynucleosides (for nomenclature, see text). Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromalography-landem mass speclrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F., Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyrighl 2000 by Ihe American Society for Mass Spectrometry.
No tandem MS experiment can be successful if the precursor ions fail to fragment (at the right time and place). The ion activation step is crucial to the experiment and ultimately defines what types of products result. Hence, the ion activation method that is appropriate for a specific application depends on the MS instrument configuration as well as on the analyzed compounds and the structural information that is wanted. Various, more or less complementary, ion activation methods have been developed during the history of tandem MS. Below we give brief descriptions of several of these approaches. A more detailed description of peptide fragmentation mles and nomenclature is provided in Chapter 2. An excellent review of ion activation methods for tandem mass spectrometry is written by Sleno and Volmer, see Reference 12, and for a more detailed review on slow heating methods in tandem MS, see Reference 13. [Pg.97]

We first confirmed the formation of these macrocycles in the polymerization of THF by using coupled gas chromatography/mass spectrometry ( 2). Macrocyclic ethers containing up to 8 THF units could be separated and identified by this method (23). The two predominant macrocyclic species found in THF polymerization mixtures are a cyclic tetramer and a cyclic pentamer. In analogy to the "crown ether" nomenclature, we proposed the name 20-crown-4 for the cyclic tetramer and 25-crown-5 for the cyclic pentamer (22). [Pg.246]

Vilsmeier reaction, 4, 1051 Furo[3,2-6]pyrroles MO calculations, 6, 979 synthesis, 4, 1069 6, 1009 Furo[3,4-a]pyrrolo[2,1,5-cd]indolizine nomenclature, 1, 22 Furopyrylium salts, 4, 993-995 Furoquinolines biosynthesis, 4, 992 occurrence, 4, 988 pharmacology, 4, 992 reactions, 4, 988 synthesis, 4, 989 Furo[3,2-c]quinolines, 4, 991 Furo[3,4-fe]quinoxaline, 1,3-diphenyl-synthesis, 4, 993 Furoquinoxalines, 4, 992 Furo[2,3-6]quinoxalines synthesis, 4, 992 Furosemide toxicity, 1, 136 Furospinulosin UV spectra, 4, 587 Furospongin-I mass spectrometry, 4, 583 Furo[3,4-d][l,2,3]triazole, 2,6-dihydro-synthesis, 6, 996 Furo[3,4 -d][ 1,2,3]triazoles synthesis, 6, 996 Furoxan, 4-amino-3-aryl-tautomerism, 6, 404 Furoxan, 4-amino-3-methyl-synthesis, 4, 414 Furoxan, 4-aryl-3-methyl-rearrangement, 6, 408 Furoxan, 3-aryl-4-nitro-synthesis, 6, 414 Furoxan, 4-benzoyl-3-methyl-oxime... [Pg.638]


See other pages where Mass spectrometry nomenclature is mentioned: [Pg.527]    [Pg.576]    [Pg.637]    [Pg.638]    [Pg.738]    [Pg.323]    [Pg.476]    [Pg.28]    [Pg.254]    [Pg.445]    [Pg.71]    [Pg.462]    [Pg.930]    [Pg.527]    [Pg.576]    [Pg.612]    [Pg.637]    [Pg.671]    [Pg.738]    [Pg.264]    [Pg.26]    [Pg.352]    [Pg.361]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 ]




SEARCH



Mass spectrometry peptide fragmentation nomenclature

© 2024 chempedia.info