Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry interpretation

PMR spectrometry is an extremely useful technique for the identification and structural analysis of organic compounds in solution, especially when used in conjunction with infrared, ultraviolet, visible and mass spectrometry. Interpretation of PMR spectra is accomplished by comparison with reference spectra and reference to chemical shift tables. In contrast to infrared spectra, it is usually possible to identify all the peaks in a PMR spectrum, although the complete identification of an unknown compound is often not possible without other data. Some examples of PMR spectra are discussed below. [Pg.421]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

As we have just seen interpreting the fragmentation patterns m a mass spectrum m terms of a molecule s structural units makes mass spectrometry much more than just a tool for determining molecular weights Nevertheless even the molecular weight can provide more information than you might think... [Pg.573]

However, interpretation of, or even obtaining, the mass spectrum of a peptide can be difficult, and many techniques have been introduced to overcome such difficulties. These techniques include modifying the side chains in the peptide and protecting the N- and C-terminals by special groups. Despite many advances made by these approaches, it is not always easy to read the sequence from the mass spectrum because some amide bond cleavages are less easy than others and give little information. To overcome this problem, tandem mass spectrometry has been applied to this dry approach to peptide sequencing with considerable success. Further, electrospray ionization has been used to determine the molecular masses of proteins and peptides with unprecedented accuracy. [Pg.333]

The present work involves the study of methyl glycosides and O-isopropylidene ketals of various isomeric deoxy sugars by mass spectrometry. Several of the compounds selected for the present study have free hydroxyl groups, and interpretation of their mass spectra shows the scope of the study of these and related deoxy sugar derivatives by mass spectrometry without prior substitution of all hydroxyl groups. Some of the candidates (compounds 4, 7, 8 and 10) are structurally related to biologically-derived deoxy sugars. [Pg.215]

An example of how information from fragmentation patterns can be used to solve structural problems is given in Worked Example 12.1. This example is a simple one, but the principles used are broadly applicable for organic structure determination by mass spectrometry. We ll see in the next section and in later chapters that specific functional groups, such as alcohols, ketones, aldehydes, and amines, show specific kinds of mass spectral fragmentations that can be interpreted to provide structural information. [Pg.413]

Maximum benefit from Gas Chromatography and Mass Spectrometry will be obtained if the user is aware of the information contained in the book. That is, Part I should be read to gain a practical understanding of GC/MS technology. In Part II, the reader will discover the nature of the material contained in each chapter. GC conditions for separating specific compounds are found under the appropriate chapter headings. The compounds for each GC separation are listed in order of elution, but more important, conditions that are likely to separate similar compound types are shown. Part II also contains information on derivatization, as well as on mass spectral interpretation for derivatized and underivatized compounds. Part III, combined with information from a library search, provides a list of ion masses and neutral losses for interpreting unknown compounds. The appendices in Part IV contain a wealth of information of value to the practice of GC and MS. [Pg.6]

Mass Spectra and Chemical Structure While there are a number of books (Refs 16, 30, 49 64) already referred to, which deal with details of the instrumentation and techniques of mass spectrometry, there are several concise introductory texts (Refs 10, 21 52) on the interpretation of mass spectra. Still other recent books deal comprehensively with organic structural investigation by mass spectrometry. One of these (Ref 63) discusses fundamentals of ion fragmentation mechanisms, while the others (Refs 7, 15, 20, 28 29) describe mass spectra of various classes of organic compounds. In the alloted space for this article methods of interpretation of mass spectra and structural identification can not be described in depth. An attempt is, therefore, made only to briefly outline the procedures used in this interpretation... [Pg.49]

From a mass spectrometry perspective, the pump must be pulse free, i.e. it must deliver the mobile phase at a constant flow rate. Pulsing of the flow causes the total ion current (TIC) trace (see Chapter 3) - the primary piece of information used for spectral analysis - to show increases in signal intensity when analytes are not being eluted and this makes interpretation more difficult. [Pg.28]

MS-MS is a term that covers a number of techniques in which two stages of mass spectrometry are used to investigate the relationship between ions found in a mass spectrum. In particular, the product-ion scan is used to derive structural information from a molecular ion generated by a soft ionization technique such as electrospray and, as such, is an alternative to CVF. The advantage of the product-ion scan over CVF is that it allows a specific ion to be selected and its fragmentation to be studied in isolation, while CVF bring about the fragmentation of all species in the ion source and this may hinder interpretation of the data obtained. [Pg.208]

To assure consistency and speed in multidisciplinary structure analysis of low-MW compounds involving various techniques (IR, NMR, MS, etc.) most industrial laboratories use a Standard Operating Procedure (SOP). In such schemes IR analysis is frequently used as a cheap filter for a quick starting control and as a means for verification. As IR detects only structural units identification of an unknown compound on the basis of IR is difficult. Mass spectrometry is used as the prime identification tool and is especially important in the determination of the exact mass and gross formulae. While structural prognostication on the basis of MS is difficult for the non-expert, a posteriori interpretation is quite feasible. H NMR is both easy and cheap, however requires greater sample quantities than either... [Pg.45]

The mass spectra of mixtures are often too complex to be interpreted unambiguously, thus favouring the separation of the components of mixtures before examination by mass spectrometry. Nevertheless, direct polymer/additive mixture analysis has been reported [22,23], which is greatly aided by tandem MS. Coupling of mass spectrometry and a flowing liquid stream involves vaporisation and solvent stripping before introduction of the solute into an ion source for gas-phase ionisation (Section 1.33.2). Widespread LC-MS interfaces are thermospray (TSP), continuous-flow fast atom bombardment (CF-FAB), electrospray (ESP), etc. Also, supercritical fluids have been linked to mass spectrometry (SFE-MS, SFC-MS). A mass spectrometer may have more than one inlet (total inlet systems). [Pg.353]

ESI mass spectra of mixtures are difficult to interpret, because each component produces ions with many different charge states. The most direct and reliable method to solve this problem is to use high-resolution MS and calculate the charge states by measuring the spacing of the isotope peaks. ESI mass spectrometry of (polymeric) mixtures with broad molecular weight distribution benefits from a prior separation that reduces the polydispersity of the analyte. [Pg.380]


See other pages where Mass spectrometry interpretation is mentioned: [Pg.204]    [Pg.204]    [Pg.814]    [Pg.84]    [Pg.21]    [Pg.133]    [Pg.178]    [Pg.51]    [Pg.8]    [Pg.212]    [Pg.433]    [Pg.41]    [Pg.52]    [Pg.5]    [Pg.297]    [Pg.67]    [Pg.109]    [Pg.412]    [Pg.27]    [Pg.108]    [Pg.140]    [Pg.182]    [Pg.185]    [Pg.228]    [Pg.229]    [Pg.237]    [Pg.631]    [Pg.480]    [Pg.498]    [Pg.498]    [Pg.1009]    [Pg.236]    [Pg.353]    [Pg.401]    [Pg.411]    [Pg.496]    [Pg.701]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Mass interpretation

Mass spectrometry data interpretation

© 2024 chempedia.info