Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stainless steels manganese

The various corrosion challenges which the industries are facing undoubtedly and frustratingly make them look for materials to protect their plant and equipment from the attacks due to corrosive media. While they search, rubber comes in to the forefront offering to face their corrosion challenges, in preference to costly metallic alternatives like titanium, manganese, stainless steel, etc. Non-metallics, such as fibre-reinforced plastics and specialty plastics, have limited application in critical areas. [Pg.173]

In all work on the determination of whole blood concentrations of manganese, stainless steel needles seem to have been used. Since the concentration of manganese in whole blood is at least 10 times greater than in serum, the effect of contamination will be proportionally smaller. Nevertheless if reliable values for manganese in whole blood are to be achieved, the use of special sampling techniques would seem to be necessary. [Pg.392]

Iron (Invar, manganese stainless steels, nitronics)... [Pg.117]

FRACTURE MECHANICS PARAMETERS FOR AN IRON-13% CHROMIUM-19% MANGANESE STAINLESS STEEL AND ITS WELDS AT CRYOGENIC TEMPERATURES ... [Pg.560]

Iron-13% Chromium-19% Manganese Stainless Steel and Its Welds... [Pg.561]

R. L. Tobler and R. P. Reed, Tensile and Fracture Behavior of a Nitrogen-Strengthened, Chromium-Nickel-Manganese Stainless Steel at Cryogenic Temperatures, Report NBSIR 76-848, National Bureau of Standards, Boulder, Colorado (1976). [Pg.572]

AISI 321 and 347 are stainless steels that contain titanium and niobium iu order to stabilize the carbides (qv). These metals prevent iatergranular precipitation of carbides during service above 480°C, which can otherwise render the stainless steels susceptible to iatergranular corrosion. Grades such as AISI 316 and 317 contain 2—4% of molybdenum, which iacreases their creep—mpture strength appreciably. In the AISI 200 series, chromium—manganese austenitic stainless steels the nickel content is reduced iu comparison to the AISI 300 series. [Pg.118]

Many types of stainless steels are available. The type most widely used in the dairy industry is 18—8 (18% chromium, 8% nickel plus iron). Small amounts of siHcon, molybdenum, manganese, carbon, sulfur, and phosphoms maybe included to obtain characteristics desired for specific appHcations. [Pg.360]

Austenitic Stainless Steels. These steels, based on iron—chromium—nickel alloys, are not hardenable by heat treatment and are predominandy austenitic. They include Types 301, 302, 302B, 303, 304, 304L, 305, 308, 309, 310, 314, 316, 316L, 317, 321, and 347. The L refers to 0.03% carbon max, which is readily available. In some austenitic stainless steels, all or part of the nickel is replaced by manganese and nitrogen in proper amounts, as in one proprietary steel and Types 201 and 202 (see Table 4). [Pg.399]

In some reports Gallionella have been associated with manganese and iron deposits that also contain chloride. It has been postulated that deep undercut pits on stainless steels (especially at welds) containing such deposits are indirectly caused by these bacteria, since the iron-manganese deposition can be accelerated by Gallionella. In spite of numerous literature citings, however, evidence for stainless steel... [Pg.122]

Nonmagnetic drill collars are manufactured from various alloys, although the most common are Monel K500 (approximately 68% nickel, 28% copper with some iron and manganese, and 316L austenitic stainless steel). A stainless steel with the composition of 0.06% carbon, 0.50% silicon, 17-19% manganese, less than 3.50% nickel, 12% chromium, and 1.15% molybdenum, with mechanical properties of 110 to 115 Ksi tensile strength is also used. [Pg.1258]

Herbsleb, G. and Schwenk, W., Flow Dependence of the Pitting Corrosion of Cr-Ni Steel in NaCl Solution. 2 Tests with Ultrasonics , Werkst. Korros., 24, 267 (1973) C.A., 79, 56638n El Din Shams, A. M., Bodran, M. M. and Khalil, S. E., Corrosion Behaviour of Manganese-containing Stainless Steel. 3 Their Susceptibility Towards Pitting Corrosion , Werkst. Korros., 24, 290 (1973) C.A., 79, 56642j... [Pg.212]

Copper-palladium-nickel-manganese brazes give very low erosion of the parent metals to be brazed, and are therefore used to join thin sections of stainless steels and high-nickel alloys. [Pg.937]

The discussion so far has been limited to the structure of pure metals, and to the defects which exist in crysteds comprised of atoms of one element only. In fact, of course, pure metals are comparatively rare and all commercial materials contain impurities and, in many cases also, deliberate alloying additions. In the production of commercially pure metals and of alloys, impurities are inevitably introduced into the metal, e.g. manganese, silicon and phosphorus in mild steel, and iron and silicon in aluminium alloys. However, most commercial materials are not even nominally pure metals but are alloys in which deliberate additions of one or more elements have been made, usually to improve some property of the metal examples are the addition of carbon or nickel and chromium to iron to give, respectively, carbon and stainless steels and the addition of copper to aluminium to give a high-strength age-hardenable alloy. [Pg.1270]


See other pages where Stainless steels manganese is mentioned: [Pg.101]    [Pg.101]    [Pg.392]    [Pg.67]    [Pg.68]    [Pg.496]    [Pg.131]    [Pg.137]    [Pg.399]    [Pg.541]    [Pg.397]    [Pg.66]    [Pg.486]    [Pg.123]    [Pg.509]    [Pg.535]    [Pg.30]    [Pg.176]    [Pg.21]    [Pg.905]    [Pg.53]    [Pg.535]    [Pg.1064]    [Pg.409]    [Pg.1292]    [Pg.231]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Manganese steel

© 2024 chempedia.info