Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lysozyme groups

As an example, the ISFET response to a pH step from 4 to 10 applied outside an 8 mm thick membrane containing lysozyme in equilibrium with a l M KNCh electrolyte solution is simulated. It should be noted that not only mobile protons react with hydroxyl ions but also protons that dissociate from acidic and basic lysozyme groups. These dissociation reactions strongly delay the titration process. [Pg.381]

At best, van der Waals interactions are weak and individually contribute 0.4 to 4.0 kj/mol of stabilization energy. ITowever, the sum of many such interactions within a macromolecule or between macromolecules can be substantial. For example, model studies of heats of sublimation show that each methylene group in a crystalline hydrocarbon accounts for 8 k[, and each C—IT group in a benzene crystal contributes 7 k[ of van der Waals energy per mole. Calculations indicate that the attractive van der Waals energy between the enzyme lysozyme and a sugar substrate that it binds is about 60 k[/mol. [Pg.15]

Both attractive forces and repulsive forces are included in van der Waals interactions. The attractive forces are due primarily to instantaneous dipole-induced dipole interactions that arise because of fluctuations in the electron charge distributions of adjacent nonbonded atoms. Individual van der Waals interactions are weak ones (with stabilization energies of 4.0 to 1.2 kj/mol), but many such interactions occur in a typical protein, and, by sheer force of numbers, they can represent a significant contribution to the stability of a protein. Peter Privalov and George Makhatadze have shown that, for pancreatic ribonuclease A, hen egg white lysozyme, horse heart cytochrome c, and sperm whale myoglobin, van der Waals interactions between tightly packed groups in the interior of the protein are a major contribution to protein stability. [Pg.160]

In Fig. 11, separations of chymotrypsinogen A, cytochrome c and lysozyme on strong cation exchangers carrying SO3 groups by gradient elution are shown. [Pg.165]

For what is probably the earliest microscopic calculations of thermodynamic cycles in proteins see Ref. 12, that reported a PDLD study of the pKtt s of some groups in lysozyme. The use of FEP approaches for studies of proteins is more recent and early studies of catalysis and binding were reported in Refs. 11, 12, and 13 of Chapter 4. [Pg.186]

The accessibility of chitin, mono-O-acetylchitin, and di-O-acetylchitin to lysozyme, as determined by the weight loss as a function of time, has been found to increase in the order chitin < mono-O-acetylchitin < di-O-acetylchitin [120]. The molecular motion and dielectric relaxation behavior of chitin and 0-acetyl-, 0-butyryl-, 0-hexanoyl and 0-decanoylchitin have been studied [121,122]. Chitin and 0-acetylchitin showed only one peak in the plot of the temperature dependence of the loss permittivity, whereas those derivatives having longer 0-acyl groups showed two peaks. [Pg.164]

In most cases the microspheres were insoluble. The polysaccharides might be partially cross-linked via amido groups formed by the carboxyl groups of the polyanion and the restored free amino group of chitosan. The susceptibility to enzymatic hydrolysis by lysozyme was poor, mainly because lysozyme, a strongly cationic protein, can be inactivated by anionic polysaccharides [207]. [Pg.179]

In this article are discussed the results of those studies which have become available over the past 15 years and which permit some generalizations on the catalytic mechanism of glycoside hydrolases from widely differing sources and with different sugar and aglycon specificities. It will be seen that, with few exceptions, the data support a mechanism almost identical to that proposed by Phillips and his group for lysozyme. ... [Pg.320]

Enzymes modified with N -carbonyldiimidazole (CDI) include horseradish peroxidase 761 /1-lactamase after nitration and reduction,[771 lysozyme, and urease.[781 Ref. [77] describes how the tyrosine side chain of a protein was nitrated, reduced with dithionite to an amino group, and then treated with CDI or A/-(2,2,2-trifluoro-ethoxycarbonyl)imidazole to give the benzoxazolinonyl alanine moiety ... [Pg.167]

It has been suggested recently that PPII helix may be the killer conformation in such diseases (Blanch et al., 2000). This was prompted by the observation, described in Section III,B, of a positive band at 1318 cm-1, not present in the ROA spectrum of the native state, that dominates the ROA spectrum of a destabilized intermediate of human lysozyme (produced by heating to 57°C at pH 2.0) that forms prior to amyloid fibril formation. Elimination of water molecules between extended polypeptide chains with fully hydrated 0=0 and N—H groups to form... [Pg.105]

Squaraine dyes 10b, 39a, 39b, 41a, 41c, 41d, and 41e were used to measure different proteins such as BSA, HSA, ovalbumin, avidin from hen egg white, lysozyme, and trypsin (Fig. 12) [58]. It is difficult to predict correlations between the dyes structures and the affinity or sensitivity of the dyes for different proteins. All squaraine probes exhibit considerable fluorescence increases in the presence of BSA. Dicyanomethylene-squaraine 41c is the brightest fluorescent probe and demonstrates the most pronounced intensity increase (up to 190 times) in presence of BSA. At the same time, the fluorescent response of the dyes 10b, 39a, 39b, 41a, 41c, 41d, and 41e in presence of other albumins (HSA and ovalbumin) is, in general, significantly lower (intensity increases up to 24 times). Dicyanomethylene-squaraine 41a and amino-squaraines 39a and 39b are the most sensitive probes for ovalbumin. Dyes 41d, 10b, and 41e containing an A-carboxyalky I -group demonstrate sufficient enhancement (up to 16 times) in the presence of avidin. Nevertheless, the presence of hydrolases like lysozyme or trypsin has only minor effects on the fluorescence intensity of squaraine dyes. [Pg.91]

COOH groups of the PE (PAA or PGA) and the -NH2 moieties of the pre-loaded protein, using l-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) as a catalyst [99]. Negligible enzyme desorption (<0.1 %) is observed from cross-linked lysozyme-loaded MS spheres after exposing the samples to an aqueous solution for 48 h, while about 25 % of the immobilized lysozyme is desorbed under the same conditions when the lysozyme is not cross-linked. [Pg.221]


See other pages where Lysozyme groups is mentioned: [Pg.2203]    [Pg.2203]    [Pg.1708]    [Pg.56]    [Pg.372]    [Pg.95]    [Pg.354]    [Pg.357]    [Pg.488]    [Pg.239]    [Pg.527]    [Pg.12]    [Pg.158]    [Pg.158]    [Pg.159]    [Pg.182]    [Pg.385]    [Pg.286]    [Pg.212]    [Pg.320]    [Pg.326]    [Pg.371]    [Pg.482]    [Pg.131]    [Pg.244]    [Pg.74]    [Pg.282]    [Pg.215]    [Pg.37]    [Pg.308]    [Pg.181]    [Pg.385]    [Pg.114]    [Pg.92]    [Pg.117]    [Pg.162]    [Pg.223]    [Pg.225]    [Pg.462]    [Pg.467]   
See also in sourсe #XX -- [ Pg.264 , Pg.265 , Pg.266 ]




SEARCH



Lysozyme

Lysozyme abnormal carboxyl groups

Lysozyme catalytic side chain groups

© 2024 chempedia.info