Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LSC

The performance of LSCs which absorb light in a large area plate, and convert it into luminescence and further concentration at the edges of the plate has been well described. The optical efficiency of an LSC is given by [Pg.939]

MODERN ASPECTS OF RARE EARTHS AND THEIR COMPLEXES [Pg.940]

The choice of a material for LSC depends obviously on the optical efficiency which in the case of rare earth ions may be obtained from the calculated absorption and fluorescence efficiency. An efficiency of 12% for Nd doped tellurite glass has been observed [126]. [Pg.940]


Lsc th e force fields th at have dern on strated accuracy for particu lar molecules or simulations. For example, CiPLS reproduces physical properties in liquid simulations extremely well. MM+ reproduces the structure and thermodynamic properties of small, nonpolar molecules better than AMBER, BIO+, and OPLS. [Pg.103]

In liquid-solid adsorption chromatography (LSC) the column packing also serves as the stationary phase. In Tswett s original work the stationary phase was finely divided CaCOa, but modern columns employ porous 3-10-)J,m particles of silica or alumina. Since the stationary phase is polar, the mobile phase is usually a nonpolar or moderately polar solvent. Typical mobile phases include hexane, isooctane, and methylene chloride. The usual order of elution, from shorter to longer retention times, is... [Pg.590]

For most samples liquid-solid chromatography does not offer any special advantages over liquid-liquid chromatography (LLC). One exception is for the analysis of isomers, where LLC excels. Figure 12.32 shows a typical LSC separation of two amphetamines on a silica column using an 80 20 mixture of methylene chloride and methanol containing 1% NH4OH as a mobile phase. Nonpolar stationary phases, such as charcoal-based absorbents, also may be used. [Pg.590]

US Atomic Energy Commission Pub. No. lSC-607, Quarterly Summary Research Report in Metallurgy for Jan. to March, Ames Laboratory, Ames, Iowa (1955)... [Pg.904]

Liquid-solid chromatography (LSC). This process, often termed adsorption chromatography, is based on interactions between the solute and fixed active sites on a finely divided solid adsorbent used as the stationary phase. The adsorbent, which may be packed in a column or spread on a plate, is generally a high surface area, active solid such as alumina, charcoal or silica gel, the last... [Pg.216]

In general, the compounds best separated by LSC are those which are soluble in organic solvents and are non-ionic. Water soluble non-ionic compounds are better separated using either reverse-phase or bonded-phase chromatography. [Pg.217]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

EC = ion exchange chromatography IPC = ion pair chromatography LSC = liquid—solid chromatography... [Pg.220]

Using a simple solvent extraction procedure to minimize matrix effects, a diclofop-methyl immunoassay was developed for milk, a number of edible plant products, and other matrices. Gas chromatography (GC) and liquid scintillation counting (LSC) of a C-labeled analyte were used as reference methods to compare with enzyme immunoassay (EIA) results. The methods were well correlated, with comparison of EIA... [Pg.697]

Van Emon et al. ° developed an immunoassay for paraquat and applied this assay to beef tissue and milk samples. Milk was diluted with a Tween 20-sodium phosphate buffer (pH 7.4), fortified with paraquat, and analyzed directly. Fortified paraquat was detected in milk at less than 1 pgkg , a concentration which is considerably below the tolerance level of 10 pg kg Ground beef was extracted with 6 N HCl and sonication. Radiolabeled paraquat was extracted from ground beef with recoveries of 60-70% under these conditions. The correlation coefficient of ELISA and LSC results for the ground beef sample was excellent, with = 0.99, although the slope was 0.86, indicating a significant but reproducible difference between the assays. [Pg.698]

Retention and selectivity in LSC are dramatically influenced by the presence of even low concentrations of polar additives in the mobile phase, particularly water [20,22,253-255]. Their influence is most pronounced when the mobile phase is nonpolar. However, when used in controlled amounts (in which case they are... [Pg.197]

Binders (TbC) 671 Bipolar pulse conductivity detector (LC) 588 Bonded phases (GC) 125 crosslinked 126 estersils 125 nonextractable 126 siloxane 125 Bonded phases (LC) 324 carbon loading 335 cleavage of ligands 336 eluotropic strength (LSC) 382 endcapping 326 hydrophobicity 364 metal impurities 369 models for surface 337 physical characteristics 333, 366... [Pg.509]

Liquid-solid chromatography (LSC), sometimes referred to as normal phase or straight phase chromatography, is characterized by the use of an inorganic adsorbent or chemically bonded stationary phase with polar functional groups and a nonaqueous mobile phase... [Pg.705]

Figure 4.27 Flow chart for coluwi selection based on sample type (m - molecular weight). PLC precipitation-liquid chromatography SEC = size-exclusion chromatography lEC - ion-exchange chromatography HIC hydrophobic interaction chromatography LSC liquid-solid chromatography RPC - reversed-phase liquid chromatography BPC (polar) bonded-phase chromatography and IPC - ion-pair chromatography. Figure 4.27 Flow chart for coluwi selection based on sample type (m - molecular weight). PLC precipitation-liquid chromatography SEC = size-exclusion chromatography lEC - ion-exchange chromatography HIC hydrophobic interaction chromatography LSC liquid-solid chromatography RPC - reversed-phase liquid chromatography BPC (polar) bonded-phase chromatography and IPC - ion-pair chromatography.
In NPLC, which refers to the use of adsorption, i.e. liquid-solid chromatography (LSC), the surface of microparticulate silica (or other adsorbent) constitutes the most commonly used polar stationary phase normal bonded-phase chromatography (N-BPC) is typified by nitrile- or amino-bonded stationary phases. Silica columns with a broad range of properties are commercially available (with standard particle sizes of 3, 5 and 10 im, and pore sizes of about 6-15nm). A typical HPLC column is packed with a stationary phase of a pore size of 10 nm and contains a surface area of between 100 and 150m2 mL-1 of mobile phase volume. [Pg.236]

LAMS Laser(-assisted) mass spectrometry LSC Liquid-solid chromatography... [Pg.756]


See other pages where LSC is mentioned: [Pg.61]    [Pg.245]    [Pg.186]    [Pg.217]    [Pg.217]    [Pg.220]    [Pg.8]    [Pg.8]    [Pg.34]    [Pg.410]    [Pg.698]    [Pg.709]    [Pg.161]    [Pg.509]    [Pg.510]    [Pg.708]    [Pg.711]    [Pg.173]    [Pg.248]    [Pg.247]    [Pg.12]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



LSC quench-curves

LSC ■ Liquid-solid

LSC ■ Liquid-solid chromatography

Microstructure of LSC Cathodes

Optimized LSC

Optimized Size and Shape of LSC

Retention in LSC

SOFCs with an LSC(F) Cathode

Solid Chromatography (LSC)

© 2024 chempedia.info