Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Loop region connections

Analysis by NMR of recombinant elk PrP revealed that the loop region connecting between the second beta-strand ((32) and the second alpha helix (7.2), (32-7.2 loop, encompassing residues from 165 to 175 (all the codon numberings of PrP below conform numbering of corresponding residues in human PrP), was outstandingly... [Pg.60]

Figure 3 Three-dimensional structure of DNase I. -Strands (marked by capital letters) are represented by arrows helices are represented by cylinders. Two six-stranded -pleated sheets consisting of strands E, F, C, A, P, N (sheet 1) and strands G, H, J, K, M, L (sheet 2) are packed against each other, forming the core of the enzyme. The flexible loop region connects -strands H and G. The carbohydrate side chain is attached to Asnl8 at the beginning of helix I. The disulfide bridge between Cysl73 and Cys209 is indicated. (From Ref. 23.)... Figure 3 Three-dimensional structure of DNase I. -Strands (marked by capital letters) are represented by arrows helices are represented by cylinders. Two six-stranded -pleated sheets consisting of strands E, F, C, A, P, N (sheet 1) and strands G, H, J, K, M, L (sheet 2) are packed against each other, forming the core of the enzyme. The flexible loop region connects -strands H and G. The carbohydrate side chain is attached to Asnl8 at the beginning of helix I. The disulfide bridge between Cysl73 and Cys209 is indicated. (From Ref. 23.)...
The secondary structure elements, formed in this way and held together by the hydrophobic core, provide a rigid and stable framework. They exhibit relatively little flexibility with respect to each other, and they are the best-defined parts of protein structures determined by both x-ray and NMR techniques. Functional groups of the protein are attached to this framework, either directly by their side chains or, more frequently, in loop regions that connect sequentially adjacent secondary structure elements. We will now have a closer look at these structural elements. [Pg.14]

Figure 2.12 Two a helices that are connected by a short loop region in a specific geometric arrangement constitute a helix-turn-helix motif. Two such motifs are shown the DNA-binding motif (a), which is further discussed in Chapter 8, and the calcium-binding motif (b), which is present in many proteins whose function is regulated by calcium. Figure 2.12 Two a helices that are connected by a short loop region in a specific geometric arrangement constitute a helix-turn-helix motif. Two such motifs are shown the DNA-binding motif (a), which is further discussed in Chapter 8, and the calcium-binding motif (b), which is present in many proteins whose function is regulated by calcium.
The hairpin motif is a simple and frequently used way to connect two antiparallel p strands, since the connected ends of the p strands are close together at the same edge of the p sheet. How are parallel p strands connected If two adjacent strands are consecutive in the amino acid sequence, the two ends that must be joined are at opposite edges of the p sheet. The polypeptide chain must cross the p sheet from one edge to the other and connect the next p strand close to the point where the first p strand started. Such CTossover connections are frequently made by a helices. The polypeptide chain must turn twice using loop regions, and the motif that is formed is thus a p strand followed by a loop, an a helix, another loop, and, finally, the second p strand. [Pg.27]

Domains are formed by different combinations of secondary structure elements and motifs. The a helices and p strands of the motifs are adjacent to each other in the three-dimensional structure and connected by loop regions. Sequentially adjacent motifs, or motifs that are formed from consecutive regions of the primary structure of a polypeptide chain, are usually close together in the three-dimensional structure (Figure 2.20). Thus to a first approximation a polypeptide chain can be considered as a sequential arrangement of these simple motifs. The number of such combinations found in proteins is limited, and some combinations seem to be structurally favored. Thus similar domain structures frequently occur in different proteins with different functions and with completely different amino acid sequences. [Pg.30]

Figure 2.21 illustrates the 24 possible ways in which two adjacent p hairpin motifs, each consisting of two antiparallel p strands connected by a loop region, can be combined to make a more complex motif. [Pg.30]

Figure 4.8 The active site in all a/p barrels is in a pocket formed by the loop regions that connect the carboxy ends of the p strands with the adjacent a helices, as shown schematically in (a), where only two such loops are shown, (b) A view from the top of the barrel of the active site of the enzyme RuBisCo (ribulose bisphosphate carboxylase), which is involved in CO2 fixation in plants. A substrate analog (red) binds across the barrel with the two phosphate groups, PI and P2, on opposite sides of the pocket. A number of charged side chains (blue) from different loops as welt as a Mg ion (yellow) form the substrate-binding site and provide catalytic groups. The structure of this 500 kD enzyme was determined to 2.4 A resolution in the laboratory of Carl Branden, in Uppsala, Sweden. (Adapted from an original drawing provided by Bo Furugren.)... Figure 4.8 The active site in all a/p barrels is in a pocket formed by the loop regions that connect the carboxy ends of the p strands with the adjacent a helices, as shown schematically in (a), where only two such loops are shown, (b) A view from the top of the barrel of the active site of the enzyme RuBisCo (ribulose bisphosphate carboxylase), which is involved in CO2 fixation in plants. A substrate analog (red) binds across the barrel with the two phosphate groups, PI and P2, on opposite sides of the pocket. A number of charged side chains (blue) from different loops as welt as a Mg ion (yellow) form the substrate-binding site and provide catalytic groups. The structure of this 500 kD enzyme was determined to 2.4 A resolution in the laboratory of Carl Branden, in Uppsala, Sweden. (Adapted from an original drawing provided by Bo Furugren.)...
Figure 4.13 (a) The active site in open twisted a/p domains is in a crevice outside the carboxy ends of the P strands. This crevice is formed by two adjacent loop regions that connect the two strands with a helices on opposite sides of the P sheet. This is illustrated by the curled fingers of two hands (b), where the top halves of the fingers represent loop regions and the bottom halves represent the P strands. The rod represents a bound molecule in the binding... [Pg.57]

In almost every one of the more than 100 different known a/p structures 1 of this class the active site is at the carboxy edge of the p sheet. Functional residues are provided by the loop regions that connect the carboxy end of the strands with the amino end of the a helices. In this one respect a fun-I damental similarity therefore exists between the a/p-barrel structures and the I open a/p-sheet structures. [Pg.57]

The general shapes of the active sites are quite different, however. Open I a/p structures cannot form funnel-shaped active sites like the barrel struc-Itures. Instead, they form crevices at the edge of the p sheet. Such crevices loccur when there are two adjacent connections that are on opposite sides of Ithe P sheet. One of the loop regions in these two connections goes out from... [Pg.57]

This is precisely where the catalytically essential zinc atom is found. This zinc atom is located precisely at this switch point, where it is firmly anchored to the protein by three side-chain ligands, His 69, Glu 72, and His 196 (Figure 4.20). The last residue of p strand 3 is residue 66, so the two zinc ligands His 69 and Glu 72 are at the beginning of the loop region that connects this p strand with its corresponding a helix. The last residue of p strand 5 is the third zinc ligand. His 196. [Pg.62]

The a/p-barrel structure is one of the largest and most regular of all domain structures, comprising about 250 amino acids. It has so far been found in more than 20 different proteins, with completely different amino acid sequences and different functions. They are all enzymes that are modeled on this common scaffold of eight parallel p strands surrounded by eight a helices. They all have their active sites in very similar positions, at the bottom of a funnel-shaped pocket created by the loops that connect the carboxy end of the p strands with the amino end of the a helices. The specific enzymatic activity is, in each case, determined by the lengths and amino acid sequences of these loop regions which do not contribute to the stability of the fold. [Pg.64]

Figure S.7 The subunit structure of the neuraminidase headpiece (residues 84-469) from influenza virus is built up from six similar, consecutive motifs of four up-and-down antiparallel fi strands (Figure 5.6). Each such motif has been called a propeller blade and the whole subunit stmcture a six-blade propeller. The motifs are connected by loop regions from p strand 4 in one motif to p strand 1 in the next motif. The schematic diagram (a) is viewed down an approximate sixfold axis that relates the centers of the motifs. Four such six-blade propeller subunits are present in each complete neuraminidase molecule (see Figure 5.8). In the topological diagram (b) the yellow loop that connects the N-terminal P strand to the first P strand of motif 1 is not to scale. In the folded structure it is about the same length as the other loops that connect the motifs. (Adapted from J. Varghese et al.. Nature 303 35-40, 1983.)... Figure S.7 The subunit structure of the neuraminidase headpiece (residues 84-469) from influenza virus is built up from six similar, consecutive motifs of four up-and-down antiparallel fi strands (Figure 5.6). Each such motif has been called a propeller blade and the whole subunit stmcture a six-blade propeller. The motifs are connected by loop regions from p strand 4 in one motif to p strand 1 in the next motif. The schematic diagram (a) is viewed down an approximate sixfold axis that relates the centers of the motifs. Four such six-blade propeller subunits are present in each complete neuraminidase molecule (see Figure 5.8). In the topological diagram (b) the yellow loop that connects the N-terminal P strand to the first P strand of motif 1 is not to scale. In the folded structure it is about the same length as the other loops that connect the motifs. (Adapted from J. Varghese et al.. Nature 303 35-40, 1983.)...
Figure 5.9 The six four-stranded motifs in a single subunit of neuraminidase form the six blades of a propeller-like structure. A schematic diagram of the subunit structure shows the propeller viewed from its side (a). An idealized propeller structure viewed from the side to highlight the position of the active site is shown in (b). The loop regions that connect the motifs (red in b) in combination with the loops that connect strands 2 and 3 within the motifs (green in b) form a wide funnel-shaped active site pocket, [(a) Adapted from P. Colman et ah, Nature 326 358-363, 1987.]... Figure 5.9 The six four-stranded motifs in a single subunit of neuraminidase form the six blades of a propeller-like structure. A schematic diagram of the subunit structure shows the propeller viewed from its side (a). An idealized propeller structure viewed from the side to highlight the position of the active site is shown in (b). The loop regions that connect the motifs (red in b) in combination with the loops that connect strands 2 and 3 within the motifs (green in b) form a wide funnel-shaped active site pocket, [(a) Adapted from P. Colman et ah, Nature 326 358-363, 1987.]...
It is easy to see from Figure 5.10 that there are only two alternatives. We can connect it either to strand number n + 3 or to n - 3. Both cases require only short loop regions that traverse the end of the barrel. How do we now continue the connections The simplest way to connect the strands that were skipped over is to join them by up-and-down connections, as illustrated in Figure 5.10. [Pg.73]

We have now connected four adjacent strands of the barrel in a simple and logical fashion requiring only short loop regions. The result is the Greek key motif described in Chapter 2, which is found in the large majority of antiparallel (i structures. The two cases represent the two possible different hands, but in all structures known to us the hand that corresponds to the case where (i strand n is linked to (3 strand n + 3 as in Figure 5.10a is present. [Pg.74]

We now wrap the strip around the barrel following the path of the string in Figure S.16 and in such a way that the p strands go along the sides of the barrel and the loop regions form the connections at the top and bottom of the banel (Figure S.17b). [Pg.77]

Figure S.28 Schematic diagrams of the two-sheet P helix. Three complete coils of the helix are shown in (a). The two parallel P sheets ate colored gieen and red, the loop regions that connect the P strands ate yellow, (b) Each stmctuial unit Is composed of 18 residues forming a P-loop-P-loop structure. Each loop region contains six residues of sequence Gly-Gly-X-Gly-X-Asp where X is any residue. Calcium Ions are bound to both loop regions. (Adapted from F. Jumak et al., Ciirr. Opin. Struct. Biol. 4 802-806, 1994.)... Figure S.28 Schematic diagrams of the two-sheet P helix. Three complete coils of the helix are shown in (a). The two parallel P sheets ate colored gieen and red, the loop regions that connect the P strands ate yellow, (b) Each stmctuial unit Is composed of 18 residues forming a P-loop-P-loop structure. Each loop region contains six residues of sequence Gly-Gly-X-Gly-X-Asp where X is any residue. Calcium Ions are bound to both loop regions. (Adapted from F. Jumak et al., Ciirr. Opin. Struct. Biol. 4 802-806, 1994.)...
A more complex p helix is present in pectate lyase and the bacteriophage P22 tailspike protein. In these p helices each turn of the helix contains three short p strands, each with three to five residues, connected by loop regions. The p helix therefore comprises three parallel p sheets roughly arranged as the three sides of a prism. However, the cross-section of the p helix is not quite triangular because of the arrangement of the p sheets. Two of the sheets are... [Pg.84]


See other pages where Loop region connections is mentioned: [Pg.155]    [Pg.169]    [Pg.61]    [Pg.71]    [Pg.913]    [Pg.118]    [Pg.639]    [Pg.381]    [Pg.46]    [Pg.115]    [Pg.321]    [Pg.11]    [Pg.155]    [Pg.169]    [Pg.61]    [Pg.71]    [Pg.913]    [Pg.118]    [Pg.639]    [Pg.381]    [Pg.46]    [Pg.115]    [Pg.321]    [Pg.11]    [Pg.556]    [Pg.557]    [Pg.255]    [Pg.280]    [Pg.21]    [Pg.21]    [Pg.28]    [Pg.32]    [Pg.35]    [Pg.40]    [Pg.48]    [Pg.49]    [Pg.60]    [Pg.60]    [Pg.64]    [Pg.77]    [Pg.85]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Connected regions

Loop regions

© 2024 chempedia.info