Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium oxide Subject

Gestodene has been prepared in several ways (85). The route that provides the highest yield is shown in Eigure 8. Microbial oxidation of (55) with Penicillium raistrickii results in the 15-alcohol (56). Protection of the alcohol as the acetate (57) and protection of the ketone as a dienolether provides (58). In a one-pot procedure (58) is treated with lithium acetyUde and subjected to a hydrolytic work-up to provide gestodene (54) (86). [Pg.214]

The homology between 22 and 21 is obviously very close. After lithium aluminum hydride reduction of the ethoxycarbonyl function in 22, oxidation of the resultant primary alcohol with PCC furnishes aldehyde 34. Subjection of 34 to sequential carbonyl addition, oxidation, and deprotection reactions then provides ketone 21 (31% overall yield from (—)-33). By virtue of its symmetry, the dextrorotatory monobenzyl ether, (/ )-(+)-33, can also be converted to compound 21, with the same absolute configuration as that derived from (S)-(-)-33, by using a synthetic route that differs only slightly from the one already described. [Pg.199]

More traditional carbon nucleophiles can also be used for an alkylative ring-opening strategy, as exemplified by the titanium tetrachloride promoted reaction of trimethylsilyl enol ethers (82) with ethylene oxide, a protocol which provides aldol products (84) in moderate to good yields <00TL763>. While typical lithium enolates of esters and ketones do not react directly with epoxides, aluminum ester enolates (e.g., 86) can be used quite effectively. This methodology is the subject of a recent review <00T1149>. [Pg.61]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

In practice, the defect structure of the materials LiJCo, M)02 and Lix(Ni, M)02 under oxidizing conditions found at cathodes, is complex. For example, oxidation of Fe3+ substituted lithium nickelate, LL(Ni, Fe)02, under cathodic conditions leads to the formation of Fe4+ and Ni4+. Conductivity can then take place by means of rapid charge hopping between Fe3+, Ni3+, Fe4+, and Ni4+, giving average charges of Fe3+S and Ni3+S. These solids are the subject of ongoing research. [Pg.381]

While Wright and co-workers were the first group of researchers to discover that the ether-based polymer poly (ethylene oxide) (PEG) was able to dissolve inorganic salts and exhibit ion conduction at room temperature, " it was the suggestion from Armand et al. that placed these novel materials at the center stage of lithium electrolyte research for more than a decade.The number of comprehensive reviews on this subject could serve as an indicator of the general enthusiasm for these materials during the period. ... [Pg.167]

Precursors of type E (erythro fragment) (Scheme 6.69) were obtained by cycloaddition of a nitrile oxide dipole to a-alkoxyalkenes. This strategy was used in the syntheses of dl- and D-lividosamine (298) (Scheme 6.73). Lithium aluminum hydride reduction of the erythro adduct 130 produced aminoalcohols 135 in a 78 22 ratio (2,4-erythro/threo) in high yield. The mixture was subjected to HC1 hydrolysis to give the hexosamine hydrochlorides 136, which after several steps, produced D-lividosamine 137 possessing the D-ribo configuration (298). [Pg.354]

Reactions of 4,7-phenanthroline-5,6-dione have been the subject of considerable study. It is reduced to 5,6-dihydroxy-4,7-phenanthroline by Raney nickel hydrogenation226,249 or by aromatic thiols in benzene,262 and oxidized by permanganate to 3,3 -bipyridyl-2,2 -dicarboxylic acid.263 It forms bishemiketals with alcohols226 and diepoxides with diazomethane.226 The diepoxides by reaction with hydrochloric acid form diols of type 57, R = Cl, which on oxidation with lead tetraacetate give 3,3 -bipyridyl diketones of type 58, R = Cl. Methyl ketones of type 58, R = H, are also obtained by lead(IV) acetate oxidation of the diol 57, R = H, obtained by lithium aluminum hydride reduction of 57, R = Cl. With phenyldiazomethane and diphenyldiazomethane the dione forms 1,3-dioxole derivatives,264,265 which readily hydrolyze back to the dione with concomitant formation of benzaldehyde and benzophenone, respectively. [Pg.36]

Given and coworkers studying the "British Macerals" took more of an organic chemist s approach to characterization. The macerals were subjected to solvent extraction, lithium reduction, hydroxyl determination, oxidation, and reaction with various reagents. N-bromosuccinimide (NBS) was used to bromin-ate aliphatic carbons which in the case for four macerals from an Aldwarke Silkstone coal yielded per 100 carbon atoms the following distribution of hydrogen which is replaced by bromine (61) vitrinite 16, exinite 25 1/2, micrinite 12, and fusinite... [Pg.16]


See other pages where Lithium oxide Subject is mentioned: [Pg.354]    [Pg.725]    [Pg.193]    [Pg.218]    [Pg.525]    [Pg.157]    [Pg.382]    [Pg.12]    [Pg.142]    [Pg.150]    [Pg.201]    [Pg.431]    [Pg.516]    [Pg.650]    [Pg.781]    [Pg.538]    [Pg.638]    [Pg.481]    [Pg.415]    [Pg.204]    [Pg.96]    [Pg.217]    [Pg.56]    [Pg.88]    [Pg.84]    [Pg.195]    [Pg.1061]    [Pg.131]    [Pg.57]    [Pg.79]    [Pg.179]    [Pg.126]    [Pg.103]    [Pg.505]    [Pg.599]    [Pg.955]    [Pg.233]    [Pg.503]    [Pg.577]    [Pg.24]    [Pg.299]    [Pg.219]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Lithium Subject

Lithium oxidation

Subject Oxides

Subject oxidation

© 2024 chempedia.info