Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium enolates stereoselective reactions

Besides their application in asymmetric alkylation, sultams can also be used as good chiral auxiliaries for asymmetric aldol reactions, and a / -product can be obtained with good selectivity. As can be seen in Scheme 3-14, reaction of the propionates derived from chiral auxiliary R -OH with LICA in THF affords the lithium enolates. Subsequent reaction with TBSC1 furnishes the 0-silyl ketene acetals 31, 33, and 35 with good yields.31 Upon reaction with TiCU complexes of an aldehyde, product /i-hydroxy carboxylates 32, 34, and 36 are obtained with high diastereoselectivity and good yield. Products from direct aldol reaction of the lithium enolate without conversion to the corresponding silyl ethers show no stereoselectivity.32... [Pg.148]

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

Darzens reactions between the chiral imine 52 and a-halo enolates 53 for the preparation of nonracemic aziridine-2-carboxylic esters 54 (Scheme 3.17) were studied by Fujisawa and co-workers [61], It is interesting to note that the lithium enolate afforded (2K,3S)-aziridirie (2i ,3S)-54 as the sole product, whereas the zinc enolate give rise to the isomer (2S,3i )-54. The a-halogen did not seem to affect the stereoselectivity. [Pg.80]

The lithium enolate 2a (M = Li ) prepared from the iron propanoyl complex 1 reacts with symmetrical ketones to produce the diastercomers 3 and 4 with moderate selectivity for diastereomer 3. The yields of the aldol adducts are poor deprotonation of the substrate ketone is reported to be the dominant reaction pathway45. However, transmetalation of the lithium enolate 2a by treatment with one equivalent of copper cyanide at —40 C generates the copper enolate 2b (M = Cu ) which reacts with symmetrical ketones at — 78 °C to selectively produce diastereomer 3 in good yield. Diastereomeric ratios in excess of 92 8 are reported with efficient stereoselection requiring the addition of exactly one equivalent of copper cyanide at the transmetalation step45. Small amounts of triphcnylphosphane, a common trace impurity remaining from the preparation of these iron-acyl complexes, appear to suppress formation of the copper enolate. Thus, the starting iron complex must be carefully purified. [Pg.541]

The addition of lithium enolates to 2-alkoxyaldehydes occurs either in a completely non-stereoselective manner, or with moderate selectivity in favor of the product predicted by the Cram-Felkin-Anh model28 ( nonchelation control 3, see reference 28 for a survey of this type of addition to racemic aldehydes). Thus, a 1 1 mixture of the diastereomeric adducts results from the reaction of lithiated tert-butyl acetate and 2-benzyloxypropanal4,28. [Pg.563]

Higher degrees of induced stereoselectivity emerge from the reactions of (/ )-glyceraldehyde acetonide with several enolates. For example, a single diastereomeric adduct results from the reaction of the acetonide with the lithium enolate of pinacolone4. [Pg.564]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]

From these and many related examples the following generalizations can be made about kinetic stereoselection in aldol additions of lithium enolates. (1) The chair TS model provides a basis for analyzing the stereoselectivity observed in aldol reactions of ketone enolates having one bulky substituent. The preference is Z-enolate syn aldol /(-enolate anti aldol. (2) When the enolate has no bulky substituent, stereoselectivity is low. (3) Z-Enolates are more stereoselective than /(-enolates. Table 2.1 gives some illustrative data. [Pg.69]

Aldol Reactions of Boron Enolates. The matter of increasing stereoselectivity in the addition step can be addressed by using other reactants. One important version of the aldol reaction involves the use of boron enolates.15 A cyclic TS similar to that for lithium enolates is involved, and the same relationship exists between enolate configuration and product stereochemistry. In general, the stereoselectivity is higher than for lithium enolates. The O-B bond distances are shorter than for lithium enolates, and this leads to a more compact structure for the TS and magnifies the steric interactions that control stereoselectivity. [Pg.71]

In the presence of zinc chloride, stereoselective aldol reactions can be carried out. The aldol reaction with the lithium enolate of /-butyl malonate and various a-alkoxy aldehydes gave anti-l,2-diols in high yields, and 2-trityloxypropanal yielded the syn-l,2-diol under the same conditions.633 Stoichiometric amounts of zinc chloride contribute to the formation of aminoni-tropyridines by direct amination of nitropyridines with methoxyamine under basic conditions.634 Zinc chloride can also be used as a radical initiator.635... [Pg.1202]

Table 2-5 summarizes the results of the asymmetric alkylation (Scheme 2-17) of the lithium enolates derived from 22 or 23.28 When chiral auxiliary 22 or 23 is involved in the alkylation reactions, the substituent at C-4 of the oxazolidine ring determines the stereoselectivity and therefore controls the stereogenic outcome of the alkylation reaction. [Pg.85]

Compound 17 is the so-called (+)-Prelog-Djerassi lactonic acid derived via the degradation of either methymycin or narbomycin. This compound embodies important architectural features common to a series of macrolide antibiotics and has served as a focal point for the development of a variety of new stereoselective syntheses. Another preparation of compound 17 is shown in Scheme 3-7.11 Starting from 8, by treating the boron enolate with an aldehyde, 20 can be synthesized via an asymmetric aldol reaction with the expected stereochemistry at C-2 and C-2. Treating the lithium enolate of 8 with an electrophile affords 19 with the expected stereochemistry at C-5. Note that the stereochemistries in the aldol reaction and in a-alkylation are opposite each other. The combination of 19 and 20 gives the final product 17. [Pg.141]

Covalently bonded chiral auxiliaries readily induce high stereoselectivity for propionate enolates, while the case of acetate enolates has proved to be difficult. Alkylation of carbonyl compound with a novel cyclopentadienyl titanium carbohydrate complex has been found to give high stereoselectivity,44 and a variety of ft-hydroxyl carboxylic acids are accessible with 90-95% optical yields. This compound was also tested in enantioselective aldol reactions. Transmetalation of the relatively stable lithium enolate of t-butyl acetate with chloro(cyclopentadienyl)-bis(l,2 5,6-di-<9-isopropylidene-a-D-glucofuranose-3-0-yl)titanate provided the titanium enolate 66. Reaction of 66 with aldehydes gave -hydroxy esters in high ee (Scheme 3-23). [Pg.155]

Michael additions of ketone enolates. The stereochemistry of Michael additions of lithium enolates of ketones to a,(3-enones is controlled by the geometry of the enolate. Addition of (Z)-enolates results in anti-products with high diaster-eoselectivity, which is not changed by addition of HMPT. Reaction of (E)-enolates is less stereoselective but tends to favor syn-selectivity, which can be enhanced by addition of HMPT. [Pg.176]

The lithium enolate of di-i-butyl malonate undergoes a stereoselective aldol reaction with Qf-alkoxyaldehydes to give anft-l,2-diol derivatives in the case of the highly hindered 2-trityloxypropanal, the stereochemistry is reversed. [Pg.11]

As an extension of the use of chiral 0-phosphinylhydroxylamine 4e for stereoselective amination, the reaction of lithium enolates with 4e was also tried. However, low levels of enantiomeric purity were obtained (Scheme 47)". ... [Pg.329]

The general trend then is that boron enolates parallel lithium enolates in their stereoselectivity but show enhanced stereoselectivity. They also have the advantage of providing access to both stereoisomeric enol derivatives. Table 2.3 gives a compilation of some of the data on stereoselectivity of aldol reactions with boron enolates. [Pg.72]

The synthesis in Scheme 13.30 uses stereoselective aldol condensation methodology. Both the lithium enolate and the boron enolate method were employed. The enol derivatives were used in enantiomerically pure form, so the condensations are examples of double stereodifferentiation (Section 2.1.3). The stereoselectivity observed in the reactions is that predicted for a cyclic transition state for the aldol condensations. [Pg.872]


See other pages where Lithium enolates stereoselective reactions is mentioned: [Pg.867]    [Pg.766]    [Pg.962]    [Pg.70]    [Pg.71]    [Pg.127]    [Pg.1184]    [Pg.1199]    [Pg.128]    [Pg.142]    [Pg.92]    [Pg.232]    [Pg.200]    [Pg.206]    [Pg.163]    [Pg.853]    [Pg.791]    [Pg.139]    [Pg.450]    [Pg.699]    [Pg.942]    [Pg.380]   


SEARCH



Enolate lithium

Enolates lithium

Enolates stereoselective reactions

Enolates stereoselectivity

Enolization stereoselectivity

Lithium enolates reactions

Reaction stereoselectivity

STEREOSELECTIVE ENOLATE REACTIONS

Stereoselective reactions

© 2024 chempedia.info