Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium aluminum hydride, reducing agent for

For most laboratory scale reductions of aldehydes and ketones catalytic hydro genation has been replaced by methods based on metal hydride reducing agents The two most common reagents are sodium borohydride and lithium aluminum hydride... [Pg.628]

Carboxylic acids are exceedingly difficult to reduce Acetic acid for example is often used as a solvent in catalytic hydrogenations because it is inert under the reaction con ditions A very powerful reducing agent is required to convert a carboxylic acid to a pri mary alcohol Lithium aluminum hydride is that reducing agent... [Pg.632]

Lithium borohydride is a more powerful reducing agent than sodium borohydride, but not as powerful as lithium aluminum hydride (Table 6). In contrast to sodium borohydride, the lithium salt, ia general, reduces esters to the corresponding primary alcohol ia refluxing ethers. An equimolar mixture of sodium or potassium borohydride and a lithium haUde can also be used for this purpose (21,22). [Pg.301]

Diacyl peroxides have been reduced with a variety of reduciag agents, eg, lithium aluminum hydride, sulfides, phosphites, phosphines, and haUde ions (187). Hahdes yield carboxyUc acid salts (RO) gives acid anhydrides. With iodide ion and certain trivalent phosphoms compounds, the reductions are sufftcientiy quantitative for analytical purposes. [Pg.124]

Iodine azide, on the other hand, forms pure adducts with A -, A - and A -steroids by a mechanism analogous to that proposed for iodine isocyanate additions. Reduction of such adducts can lead to aziridines. However, most reducing agents effect elimination of the elements of iodine azide from the /mwj -diaxial adducts of the A - and A -olefins rather than reduction of the azide function to the iodo amine. Thus, this sequence appears to be of little value for the synthesis of A-, B- or C-ring aziridines. It is worthy to note that based on experience with nonsteroidal systems the application of electrophilic reducing agents such as diborane or lithium aluminum hydride-aluminum chloride may yet prove effective for the desired reduction. Lithium aluminum hydride accomplishes aziridine formation from the A -adducts, Le., 16 -azido-17a-iodoandrostanes (97) in a one-step reaction. The scope of this addition has been considerably enhanced by the recent... [Pg.24]

Compare atomic charges for sodium borohydride and lithium aluminum hydride. Which ion contains the most electron-rich hydride The least electron-rich hydride Based on these results alone, which hydride reagent should be the better reducing agent Explain. Obtain atomic charges for free borohydride and aluminum hydride anions. What changes, if any, does the counterion produce ... [Pg.140]

Lithium aluminum hydride, LiAIH4/ is another reducing agent often used for reduction of aldehydes and ketones. A grayish powder that is soluble in ether and tetrabydrofuran, LiAlH4 is much more reactive than NaBH4 but also more dangerous. It reacts violently with water and decomposes explosively when heated above 120 °C. [Pg.610]

A slightly more complex Scheme is required for preparation of an antihistaminic agent bearing a secondary amine, e. g., tofenacin (32). In the synthesis of tofenacin, alkylation of the benzhydrol (29) with ethyl bromoacetate affords the alkoxy ester (30) saponification followed by conversion to the methylamide gives (31), which is reduced with lithium aluminum hydride to complete the synthesis of 32. 10... [Pg.32]

The neutralization values were influenced by reduction with strong reducing agents, lithium aluminum hydride, sodium borohydride, and amalgamated zinc plus hydrochloric acid (35, 46). For the most part, the consumption of NajCOj and of NaOEt decreased in equivalent amounts. This is further confirmation of the assumption that lactones of the fluorescein type or of the lactol type are present. The reaction with sodium ethoxide was shown to be no true neutralization, that is, exchange of H+for Na+, at all, but an addition reaction w ith the formation of the sodium salt of a semi-acetal or ketal ... [Pg.205]

Lithium aluminum hydride dissolves in pyridine and forms lithium tetrakis-(A -dihydropyridyl)aluminate which itself is a reducing agent for purely aromatic ketones [440, 441]. [Pg.55]

Much more conveniently, even a,)S-unsaturated esters can he transformed into a,)S-unsaturated alcohols by very careful treatment with lithium aluminum hydride [1073], sodium bis(2-methoxyethoxy)aluminum hydride [544] or diiso-butylalane [1151] (Procedure 18, p. 208). An excess of the reducing agent must be avoided. Therefore the inverse technique (addition of the hydride to the ester) is used and the reaction is usually carried out at low temperature. In hydrocarbons as solvents the reduction does not proceed further even at elevated temperatures. Methyl cinnamate was converted to cinnamyl alcohol in 73% yield when an equimolar amount of the ester was added to a suspension of lithium aluminum hydride in benzene and the mixture was heated at 59-60° for 14.5 hours [1073]. Ethyl cinnamate gave 75.5% yield of cinnamyl alcohol on inverse treatment with 1.1 mol of sodium bis(2-methoxy-ethoxy)aluminum hydride at 15-20° for 45 minutes [544]. [Pg.157]

Aromatic nitriles were converted to aldehydes in 50-95% yields on treatment with 1.3-1.7mol of sodium triethoxy aluminum hydride in tetrahydrofuran at 20-65° for 0.5-3.5 hours [1149. More universal reducing agents are lithium trialkoxyaluminum hydrides, which are applicable also to aliphatic nitriles. They are generated in situ from lithium aluminum hydride and an excess of ethyl acetate or butanol, respectively, are used in equimolar quantities in ethereal solutions at —10 to 12°, and produce aldehydes in isolated ytelds ranging from 55% to 84% [1150]. Reduction of nitriles was also accomplished with diisobutylalane but in a very low yield [7/5/]. [Pg.173]

The preferential chemical reaction of a reagent with one of two or more different functional groups. For example, sodium borohydride exhibits greater chemoselectivity as a reducing agent than does lithium aluminum hydride, because the latter reacts with a wider spectrum of substances. [Pg.143]


See other pages where Lithium aluminum hydride, reducing agent for is mentioned: [Pg.1231]    [Pg.1231]    [Pg.1197]    [Pg.1792]    [Pg.308]    [Pg.300]    [Pg.305]    [Pg.29]    [Pg.388]    [Pg.190]    [Pg.18]    [Pg.1109]    [Pg.288]    [Pg.244]    [Pg.83]    [Pg.177]    [Pg.895]    [Pg.413]    [Pg.522]    [Pg.75]    [Pg.113]    [Pg.60]    [Pg.220]    [Pg.106]    [Pg.111]    [Pg.174]    [Pg.97]    [Pg.209]    [Pg.794]   


SEARCH



Aluminum hydride reducing agents

Hydride agents

Hydride reducing agents

Lithium aluminum hydride reducing agent for aldehydes and ketones

Lithium aluminum hydride, reducing

Lithium reducing agent

Reducing agent

Reducing agents lithium aluminum hydride

© 2024 chempedia.info