Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium aluminum hydride, complexes

Discovery. These catalysts were discovered during a study of the use of transition metal cyanides in combination with metal alkyl and hydride reducing agents in polymerizations. The combination of nickel cyanide and lithium aluminum hydride complexed very strongly with tetrahydrofuran. A similar complexing action occurred with propylene oxide and nickel hexacyanoferrate(II)-lithium aluminum hydride. This led to speculation as to the role of the double-metal cyanide itself. [Pg.224]

Asymmetric reduction of oi, -enones. Prochiral cyclic and acyclic a,p-enones are reduced by lithium aluminum hydride complexed with 1 to (S)-allylic alcohols in optical yields of 30-100% (equation 1). [Pg.33]

After hydrogen evolution has subsided, the solution is refluxed for 2 hrs. The complex has been shown to eifect asymmetric reduction of ketones optically active alcohols of up to 40% optical purity have been obtained and they all have the (S)-configuration. On the other hand, if increasing quantities of ethanol are added to the lithium aluminum hydride complex, the configuration of the secondary alcohol formed changes from (S) to (R). Thus the stereoselectivity increases to a maximum and then decreases as more ethanol is added. Furthermore, maximum selectivities are substantially increased... [Pg.398]

The lithium aluminum hydride complex is prepared as in ihe procedure above. The diethyl ether solution is then refluxed for 10 min, then allowed to stand at 25 CC for 24 h. The solid dissolves after 2-3 min at reflux, and remains in solution. Reduction is then performed as in the procedure above. [Pg.762]

Oxygen-containing azoles are readily reduced, usually with ring scission. Only acyclic products have been reported from the reductions with complex metal hydrides of oxazoles (e.g. 209 210), isoxazoles (e.g. 211 212), benzoxazoles (e.g. 213 214) and benzoxazolinones (e.g. 215, 216->214). Reductions of 1,2,4-oxadiazoles always involve ring scission. Lithium aluminum hydride breaks the C—O bond in the ring Scheme 19) 76AHC(20)65>. [Pg.68]

Cationic rings are readily reduced by complex hydrides under relatively mild conditions. Thus isoxazolium salts with sodium borohydride give the 2,5-dihydro derivatives (217) in ethanol, but yield the 2,3-dihydro compound (218) in MeCN/H20 (74CPB70). Pyrazolyl anions are reduced by borohydride to pyrazolines and pyrazolidines. Thiazolyl ions are reduced to 1,2-dihydrothiazoles by lithium aluminum hydride and to tetrahydrothiazoles by sodium borohydride. The tetrahydro compound is probably formed via (219), which results from proton addition to the dihydro derivative (220) containing an enamine function. 1,3-Dithiolylium salts easily add hydride ion from sodium borohydride (Scheme 20) (80AHC(27)151). [Pg.68]

The excess lithium aluminum hydride and the metallic complexes are decomposed by the careful addition of 82 ml. of distilled water, from a dropping funnel, to the well-stirred mixture. The reaction mixture is stirred for an additional 30 minutes, filtered with suction, and the solid is washed with several 100-ml. portions of ether. After the ether is removed from the filtrates, the residual oil is distilled under reduced pressure. The yield of laurylmethylamine, a colorless liquid boiling at 110-115°/1.2-1.5 mm., is 121-142 g. (81-95%) (Note 6). [Pg.49]

During the course of these mechanistic studies a wide range of possible applications of this reaction have been revealed. When the reduction is carried out with lithium aluminum deuteride and the anion complex decomposed with water, a monodeuterio compound (95) is obtained in which 70% of the deuterium is in the 3a-position. Reduction with lithium aluminum hydride followed by hydrolysis with deuterium oxide yields mainly (70 %) the 3j5-di-epimer (96), while for the preparation of dideuterio compounds (94) both steps have to be carried out with deuterated reagents. ... [Pg.174]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

An ethynylation reagent obtained by decomposition of lithium aluminum hydride in ethers saturated with acetylene gives a satisfactory yield of (64), Best results are obtained with the lithium acetylide-ethylene diamine complex in dioxane-ethylenediamine-dimethylacetamide. Ethynylation of (63) with lithium acetylide in pure ethylenediamine gives (64) in 95% yield. [Pg.67]

Since electronegative groups at C-20 or C-21 deactivate a A hdouble bond towards attack by osmium tetroxide, Swiss workers have devised procedures wherein these groups are first reduced with lithium aluminum hydride, and the resulting aluminum complexes are then treated with osmium tetroxide... [Pg.218]

The reduction of iminium salts can be achieved by a variety of methods. Some of the methods have been studied primarily on quaternary salts of aromatic bases, but the results can be extrapolated to simple iminium salts in most cases. The reagents available for reduction of iminium salts are sodium amalgam (52), sodium hydrosulfite (5i), potassium borohydride (54,55), sodium borohydride (56,57), lithium aluminum hydride (5 ), formic acid (59-63), H, and platinum oxide (47). The scope and mechanism of reduction of nitrogen heterocycles with complex metal hydrides has been recently reviewed (5,64), and will be presented here only briefly. [Pg.185]

Reduction of l-methyl-2-alkyl-.d -pyrroline and l-methyl-2-alkyl-.d -piperideine perchlorates with complex hydrides prepared in situ by partial decomposition of lithium aluminum hydride with the optically active alcohols (—)-menthol and (—)-borneol affords partially optically active l-methyl-2-alkyl pyrrolidines (153, n = 1) and 1-methy 1-2-alkyl piperideines (153, n = 2), respectively (241,242). [Pg.287]

The lithium aluminum hydride-aluminum chloride reduction of ketones is closely related mechanistically to the Meerwein-Ponndorf-Verley reduction in that the initially formed alkoxide complex is allowed to equilibrate between isomers in the... [Pg.20]

Preparation of 2-Cyctopropylmethylamino-5-Chlorobenzhydrol To a slurry of 94.8 g (2.47 mols) of lithium aluminum hydride in 1.2 liters of tetrahydrofuran is added with stirring a solution of 356 g (1.18 mols) of 2-cyclopropylcarbonylamido-5-chlorobenzo-phenone in 1.8 liters of tetrahydrofuran. The addition takes 80 minutes while maintaining gentle refluxing, and the reaction mixture is then refluxed overnight and allowed to cool to room temperature over a period of 3 days. The complex formed in the reaction mixture is then hydrolyzed with water. [Pg.1278]

Perfluorosuccinamide-Lithium Aluminum Hydride (Danger of Explosion). In an attempt to reduce perfluorosuccinamide to the corresponding diamine, it was added to an ether soln of lithium aluminum hydride in a nitrogen atm. Hydrolysis was then attempted, but as a second drop of w was added, a violent expln and ether fire resulted. It was shown that the diamide and the lithium aluminum hydride reacted to give an unstable complex which detonated at room temp Ref T.S. Reid G.H. Smith, C EN 29,3042 (1951) CA 46, 3279 (1952)... [Pg.657]

Remarkable solvent effects on the selective bond cleavage are observed in the reductive elimination of cis-stilbene episulfone by complex metal hydrides. When diethyl ether or [bis(2-methoxyethyl)]ether is used as the solvent, dibenzyl sulfone is formed along with cis-stilbene. However, no dibenzyl sulfone is produced when cis-stilbene episulfone is treated with lithium aluminum hydride in tetrahydrofuran at room temperature (equation 42). Elimination of phenylsulfonyl group by tri-n-butyltin hydride proceeds by a radical chain mechanism (equations 43 and 44). [Pg.772]

Reduction of Poly(2-cyano-l,3-phenylene arylene ether), 20 Twenty-five mL of a 1.0 M solution of lithium aluminum hydride (LAH) in THF was cooled to 0° C before adding a solution of 1.64 g (5.0 meg) of 20 in 120 mL of THF. The resultant slurry was stirred for 24 h at 0° C, refluxed for 1 h, recooled to 5° C, and the excess LAH decomposed with 2 mL of water. The volume of the solution was reduced to 25 mL before pouring the mixture into 500 mL of 5% HC1 to dissociate the amine aluminum salt complex and precipitate the polymer. The polymer was recovered by filtration, reslurried in 20 mL of water and the pH adjusted to 9.0 with NaOH. After recovery of the neutralized polymer was recovered, it was dried in vacuo redissolved in CHC13, and reprecipitated using water as the nonsolvent. Final drying in vacuo for 24 h at 35° C left 1.2 g (72.3%) of poly[oxy-l,4-phenylene-(l-methylethylidene)-l, 4 -phenylene-oxy-(2"-aminomethyl)-l",3"-phenylene], 21, [n] (CHCI3) 0.3 dl/g. [Pg.13]

A slightly more complex Scheme is required for preparation of an antihistaminic agent bearing a secondary amine, e. g., tofenacin (32). In the synthesis of tofenacin, alkylation of the benzhydrol (29) with ethyl bromoacetate affords the alkoxy ester (30) saponification followed by conversion to the methylamide gives (31), which is reduced with lithium aluminum hydride to complete the synthesis of 32. 10... [Pg.32]

A rather complex fused isoindoline (87) has been found to show good anorectic activity. This substance differs from other anorectic agents by not being a p-phenethylamine analogue. Preparation of this compound starts by reaction of a substituted benzoyl-benzoic acid (82) with ethylene diamine. The product (84) can be rationalized as being the aminal from the initially obtained monoamide 83. This is then subjected to reduction with lithium aluminum hydride... [Pg.461]

The reduction of a-hydroxynitriles to yield vicinal amino alcohols is conveniently accomplished with complex metal hydrides for example, lithium aluminum hydride or sodium borohydride [69]. However, it is still worth noting that a two-step chemo-enzymatic synthesis of (R)-2-amino-l-(2-furyl)ethanol for laboratory production was developed followed by successful up-scaling to kilogram scale using NaBH4/CF3COOH as reductant [70],... [Pg.115]

Some bis(salicylaldehydo) complexes of cobalt(II), nickel(II), and cop-per(II), with or without lithium aluminum hydride, are said to catalyze hydrogenation of benzene and alkylbenzenes at 200°C, but the systems appear to be heterogeneous (447). [Pg.378]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]


See other pages where Lithium aluminum hydride, complexes is mentioned: [Pg.810]    [Pg.199]    [Pg.539]    [Pg.443]    [Pg.810]    [Pg.199]    [Pg.539]    [Pg.443]    [Pg.300]    [Pg.304]    [Pg.166]    [Pg.14]    [Pg.61]    [Pg.388]    [Pg.497]    [Pg.140]    [Pg.97]    [Pg.105]    [Pg.18]    [Pg.842]    [Pg.76]    [Pg.229]    [Pg.156]    [Pg.20]    [Pg.419]    [Pg.895]    [Pg.95]   


SEARCH



Aluminum complexation

Aluminum, lithium complexes

Lithium aluminum hydride complex with carbonyls

Lithium complexes

© 2024 chempedia.info