Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid Transfer with Transient 2-Phase Flow

Liquid transfer with transient 2-phase flow—cooldown of long pipeline. [Pg.109]

The problems of micro-hydrodynamics were considered in different contexts (1) drag in micro-channels with a hydraulic diameter from 10 m to 10 m at laminar, transient and turbulent single-phase flows, (2) heat transfer in liquid and gas flows in small channels, and (3) two-phase flow in adiabatic and heated microchannels. The smdies performed in these directions encompass a vast class of problems related to flow of incompressible and compressible fluids in regular and irregular micro-channels under adiabatic conditions, heat transfer, as well as phase change. [Pg.103]

Two-phase flow is always involved in the cooldown of a transfer line. Since this process is a transient one, several different types of two-phase flow will exist simultaneously along the inlet of the transfer line. Severe pressure and flow oscillations occur as the cold liquid comes in contact with successive warm sections of the line. Such instability continues until the entire transfer line is cooled down and filled with liquid cryogen. [Pg.190]

Bubble columns. Tracers are used in bubble columns and gas-sparged slurry reactors mainly to determine the backmixing parameters of the liquid phase and/or gas-liquid or liquid-solid mass transfer parameters. They can be used for evaluation of holdup along the lines reviewed in the previous Section 6.2.1. However, there are simpler means of evaluating holdup in bubble columns, e.g. monitoring the difference in liquid level with gas and without gas flow. Numerous liquid phase tracer studies of backmixing have been conducted (132-149). Steady-state or continuous tracer inputs (132,134,140,142) as well as transient studies with pulse inputs (136,141,142,146) were used. Salts such as KC Jl or NaCil, sulfuric acid and dyes were employed as tracers. Electroconductivity detectors and spectrophotometers were used for tracer detection. The interpretation of results relied on the axial dispersion model. Various correlations for the dispersion... [Pg.168]

Measurements Using Liquid-Phase Reactions. Liquid-phase reactions, and the oxidation of sodium sulfite to sodium sulfate in particular, are sometimes used to determine kiAi. As for the transient method, the system is batch with respect to the liquid phase. Pure oxygen is sparged into the vessel. A pseudo-steady-state results. There is no gas outlet, and the inlet flow rate is adjusted so that the vessel pressure remains constant. Under these circumstances, the inlet flow rate equals the mass transfer rate. Equations (11.5) and (11.12) are combined to give a particularly simple result ... [Pg.399]

There are several types of situations covered by Eq, (21.16). The simplest case is zero convective flow and equimolal counterdiffusion of A and B, as occurs in the diffusive mixing of two gases. This is also the case for the diffusion of A and B in the vapor phase for distillations that have constant molal overflow. The second common case is the diffusion of only one component of the mixture, where the convective flow is caused by the diffusion of that component. Examples include evaporation of a liquid with diffusion of the vapor from the interface into a gas stream and condensation of a vapor in the presence of a noncondensable gas. Many examples of gas absorption also involve diffusion of only one component, which creates a convective flow toward the interface. These two types of mass transfer in gases are treated in the following sections for the simple case of steady-state mass transfer through a stagnant gas layer or film of known thickness. The effects of transient diffusion and laminar or turbulent flow are taken up later. [Pg.652]

In the Cora code, the corrosion product layers outside the reactor core are rather arbitrarily subdivided into two layers, a transient one and a permanently deposited one. Supply to the transient layer occurs via deposition of suspended particles from the coolant, release from it includes erosion of particles back to the coolant as well as transport into the permanently deposited layer and partial conversion into dissolved species. In a comparable manner, the supply of nuclides to the permanent layer is assumed to result from transfer from the transient layer and the exchange equilibrium with the dissolved species present in the coolant. The deposition coefficients of suspended solids can be calculated on the basis of particle size and flow characteristics. The coefficients of relevance for the permanently deposited layer, including ionic transfer mechanisms between liquid and solid phases, can be derived from theoretical considerations as well as from laboratory studies of corrosion product solubilities. Finally, diffusion rates of nuclides at the interphase layers are needed, from the oxide layer to the coolant as well as in the reverse direction. These data can be obtained in part by theoretical considerations and by measurements at the plants. [Pg.329]


See other pages where Liquid Transfer with Transient 2-Phase Flow is mentioned: [Pg.46]    [Pg.401]    [Pg.459]    [Pg.911]    [Pg.743]    [Pg.289]    [Pg.397]    [Pg.397]    [Pg.30]    [Pg.198]    [Pg.467]    [Pg.2160]    [Pg.397]    [Pg.583]   


SEARCH



Flow liquid flows

Phase flow

Transient flow

Transient phase

© 2024 chempedia.info