Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid Equilibrium Operations

Common coexisting phases in many engineering processes are vapor and liquid. Besides, phase equilibriums of liquid-liquid, liquid-solid, and vapor-solid systems are also used in various processes. In this Section, we mainly consider the vapor-liquid equilibrium operations and discuss the Henry s law, equation of states, and activity coefficient models with some relevant examples. [Pg.35]

The calculation of single-stage equilibrium separations in multicomponent systems is implemented by a series of FORTRAN IV subroutines described in Chapter 7. These treat bubble and dewpoint calculations, isothermal and adiabatic equilibrium flash vaporizations, and liquid-liquid equilibrium "flash" separations. The treatment of multistage separation operations, which involves many additional considerations, is not considered in this monograph. [Pg.6]

The choice of reactor temperature, pressure, arid hence phase must, in the first instance, take account of the desired equilibrium and selectivity effects. If there is still freedom to choose between gas and liquid phase, operation in the liquid phase is preferred. [Pg.46]

Data on the gas-liquid or vapor-liquid equilibrium for the system at hand. If absorption, stripping, and distillation operations are considered equilibrium-limited processes, which is the usual approach, these data are critical for determining the maximum possible separation. In some cases, the operations are are considerea rate-based (see Sec. 13) but require knowledge of eqmlibrium at the phase interface. Other data required include physical properties such as viscosity and density and thermodynamic properties such as enthalpy. Section 2 deals with sources of such data. [Pg.1350]

For liquid/liquid extraction, data on mass transfer rate of the system at typical operating conditions are required. Also required are an applicable liquid/liquid equilibrium curve and data on chemical reactions occurring after mass transfer in the mixer. [Pg.208]

Lj and are the pure liquid and inert gas loading rates, respectively, in units of Ib-moles/hr-ft. The second expression is the operating line on an equilibrium diagram. In all scrubbing application, where the transfer of solute is from the gas to the liquid, the operating line will lie above the equilibrium curve. When the mass transfer is from the liquid to the gas phase, the operating line will lie below the equilibrium curve. The latter case is known as stripping . [Pg.262]

Plot the vapour-liquid equilibrium curve from data available at the column operating pressure. In terms of relative volatility ... [Pg.505]

Assuming the vapor-liquid equilibrium to be ideal, at what pressure would the distillation column have to operate on the basis of the temperature in the condenser ... [Pg.178]

A vapor-liquid equilibrium calculation shows that a good separation is obtained but the required product purity of butadiene <0.5 wt% and sulfur dioxide <0.3 wt% is not obtained. Further separation of the liquid is needed. Distillation of the liquid is difficult because of the narrow temperature limits between which the distillation must operate. However, the liquid can be stripped using nitrogen (Figure 14.21c). [Pg.308]

Gas production and subsequent pressure-time histories can be investigated successfully only in pressure vessels such as the VSP. If the gaseous product dissolves partly in the reaction mixture (i.e., the vapor-liquid equilibrium is changed), careful investigations of the pressure effect within the possible variations of the operating conditions are necessary. Pressurized vessels are also useful to investigate any mass transfer improvement for gas-liquid or gas-dissolved (suspended) solid reactions. [Pg.137]

The precise vapor-liquid equilibrium (VLE) data of binary mixtures like alcohol-alcohol are important to design many chemical processes and separation operations. The VLE investigations of binary systems have been the subject of much interest in recent years[l-9]. [Pg.249]

None of the experimental techniques described by Bonner, however, has been capable of providing reliable vapor-liquid equilibrium data at the combined extremes of elevated temperature and reduced pressure, conditions applicable to most commercial polymer-stripping operations. This problem has been addressed by Meyer and Blanks (1982), who developed a modified isopiestic technique that could be used when solubilities are low. Although the success of this new technique was demonstrated using just polyethylene with isobutane and propane, the idea shows considerable promise for obtaining data at unusual conditions of temperature and pressure. [Pg.67]

The partial derivatives are usually assumed to be constants that are evaluated at the steadystate operating level from the vapor-liquid equilibrium data. Thus, pressure and temperature on a tray can be measured, as shown in Fig. 8.3c, and a composition signal or pressure-compensated temperature signal generated and controlled. [Pg.257]


See other pages where Liquid Equilibrium Operations is mentioned: [Pg.219]    [Pg.221]    [Pg.223]    [Pg.225]    [Pg.227]    [Pg.229]    [Pg.231]    [Pg.233]    [Pg.235]    [Pg.237]    [Pg.239]    [Pg.241]    [Pg.243]    [Pg.245]    [Pg.247]    [Pg.249]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.219]    [Pg.221]    [Pg.223]    [Pg.225]    [Pg.227]    [Pg.229]    [Pg.231]    [Pg.233]    [Pg.235]    [Pg.237]    [Pg.239]    [Pg.241]    [Pg.243]    [Pg.245]    [Pg.247]    [Pg.249]    [Pg.251]    [Pg.253]    [Pg.255]    [Pg.1911]    [Pg.1247]    [Pg.1448]    [Pg.76]    [Pg.92]    [Pg.133]    [Pg.451]    [Pg.512]    [Pg.253]    [Pg.254]    [Pg.170]    [Pg.404]    [Pg.153]   


SEARCH



Liquid operations

© 2024 chempedia.info