Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linker Trityl resins

Trityl resins are particularly suitable for immobilization of nucleophilic substrates such as acids, alcohols, thiols, and amines. They are quite acid-sensitive and are cleavable even with acetic acid this is useful when acid-labile protecting groups are used. The stability of trityl resin can be tailored by use of substituted arene rings, as shown by chlorotrityl resin, which furnishes a more stable linker than the trityl resin itself. Steric hindrance also prohibits formation of diketopiperazines during the synthesis of peptides. Orthogonality toward allyl-based protective groups was demonstrated in the reverse solid-phase peptide synthesis of oligopeptides [30] (Scheme 6.1.4). [Pg.455]

Figure 16.12. Structure of the linker group and single bead IR spectra, (a) Wang resin, (b) Ttritylalcohol resin, (c) Ethylene glycol hound to trityl resin. The intensity of the hydroxy absorption at 3580 cm 1 changes by the substituent near to hydroxy group. (Reproduced from [38].)... Figure 16.12. Structure of the linker group and single bead IR spectra, (a) Wang resin, (b) Ttritylalcohol resin, (c) Ethylene glycol hound to trityl resin. The intensity of the hydroxy absorption at 3580 cm 1 changes by the substituent near to hydroxy group. (Reproduced from [38].)...
The trityl linkers were introduced to permit anchoring of carboxylic acids and other nucleophiles to a solid support and to effect cleavage reactions under very mild acidic conditions [64-67]. Various trityl resins, such as Ib-le (Table 1), have been developed that differ in the substitution pattern of the aromatic ring substituents in order to modify the cleavage properties by their influence on the stability of the trityl cation. For carboxylic acids, amines, and phenols, the chlorotrityl resin Ic affords a more stable anchor [65-67] than does resin lb. Similarly, resin le, which contains both fluoro and carbonyl ring substituents, proved to be very stable toward nucleophiles and was fully compatible with piperidine / / -Fmoc (9-fluorenylmethoxycar-bonyl) deprotections used in a model peptide synthesis. Cleavage of acids from le could be effected using dilute TFA in dichloromethane [68]. [Pg.204]

A useful application of trityl linkers involves anchoring one function of a symmetrical diol [70-73] or diamine [74,75], enabling subsequent transformations to be conducted on the second functional group before acid-induced cleavage. Trityl resins can be used for anchoring phenols, such as 4-hydroxybenzaldehyde, in the presence of pyridine. The product was transformed via an oxime into isoxazolines, which were cleaved from the resin using TFA-CH2CI2 (1 99) [76]. [Pg.205]

The properties of the various linker-derivatized resins used in Fmoc SPPS have already been discussed and were summarized in Chapter 2, Table 2. For the purpose of selecting the appropriate procedure for attachment of the first residue, these can be conveniently separated into three categories on the basis of their reactive functional groups (hydrox5methyl-, trityl chloride-, and aminomethyl-based resins) the mostly commonly used are listed in Table 1. [Pg.44]

After isolating the product of a solid phase synthesis, the support (resin + linker) is usually discarded as waste, although successful examples of its reuse in further synthetic cycles are known with trityl type linkers (Frechet and Haque 1975). To reduce both volume of operation and amount of waste, the loading of the resin (quantified as millimoles of functionality per gram) has to be increased. Besides theoretical limitations (for polystyrene this is reached when every phenyl ring is substituted by the linker), there may be practical boundaries for using highly loaded resins in solid-phase supported synthesis. This issue was studied... [Pg.190]

Alternatively to using prelipidated building blocks palmitoylation on resin is possible with the hydrazine linker. In Scheme 27 the synthesis route for the palmitoylated and farnesylated N-Ras peptide 78 is shown. Here the initial loading of trityl-protected cysteine to the hydrazine linker was mediated by A,A-diisopropylcarbodiimide (DIG) and HOBt. After Fmoc removal the proline was coupled using HBTU and HOBt. The trityl-protected dipeptide 75 was subsequently S-deprotected using TFA with triethylsilane (TES) as a scavenger. Farnesylation of the free thiol was achieved with an excess of farnesyl bromide. [Pg.557]

Making use of a O-trityl-hydroxylamine linker, Meloni and Taddei reported the first example of Miller hydroxamate on solid phase (161, Scheme 73). /1-Lactams 162 and 163 were prepared on solid support starting from serine, threonine or other / -hydroxyacids derived from naturally occurring amino acids and a resin bonnd hydroxylamine 159. The ring closure of 160 was carried out under Mitsunobu conditions. [Pg.202]

The trialkoxy benzhydrol linker, developed by Rink in 1987 [46] ( Rink acid resin , Figure 3.4) is a further acid-labile linker for carboxylic acids. Esters of this linker can, like trityl esters, be cleaved with acids as weak as acetic acid or HOBt [47], and care must be taken to avoid loss of the product during synthetic operations. [Pg.43]

Attachment of carboxylic acids to supports as trityl esters is achieved by treatment of the corresponding trityl chloride resin with the acid in the presence of an excess of a tertiary amine (Figure 3.5 see also Section 13.4.2). This esterification usually proceeds more quickly than the acylation of benzyl alcohol linkers. Less racemization is generally observed during the esterification of A-protected a-amino acids with trityl linkers than with benzyl alcohol linkers [47], If valuable acids are to be linked to insoluble supports, quantitative esterification can be accomplished by using excess 2-chlorotrityl chloride resin, followed by displacement of the remaining chloride with methanol [64]. [Pg.44]

Tertiary aliphatic alcohol linkers have only occasionally been used in solid-phase organic synthesis [73], This might be because of the vigorous conditions required for their acylation. Esterification of resin-bound linker 4 with /V-Fmoc-prolinc [72,74] could not be achieved with the symmetric anhydride in the presence of DMAP (20 h), but required the use of /V-Fmoc-prolyl chloride (10-40% pyridine in DCM, 25 °C, 10-20 h [72]). A further problem with these linkers is that they can undergo elimination, a side reaction that cannot occur with benzyl or trityl linkers. Hence, for most applications in which a nucleophile-resistant linker for carboxylic acids is needed, 2-chlorotri-tyl- or 4-acyltrityl esters will probably be a better choice than ferf-alkyl esters. [Pg.45]

Only a few examples have been reported of the etherification of alcohols with resin-bound diarylmethyl alcohols (Entry 5, Table 3.30 Entry 5, Table 3.31 [564]). Diarylmethyl ethers do not seem to offer advantages over the more readily accessible trityl ethers, which are widely used as linkers for both phenols and aliphatic alcohols. Attachment of alcohols to trityl linkers is usually effected by treating trityl chloride resin or 2-chlorotrityl chloride resin with the alcohol in the presence of a base (phenols pyridine/THF, 50 °C [565] or DIPEA/DCM [566] aliphatic alcohols pyridine, 20-70 °C, 3 h-5 d [567-572] or collidine, Bu4NI, DCM, 20 °C, 65 h [81]). Aliphatic or aromatic alcohols can be attached as ethers to the same type of light-sensitive linker as used for carboxylic acids (Section 3.1.3). [Pg.104]

Usually, it is different to make a clear distinction between linker and spacer. The linker is the minimum part of the resin required for the functional cleavage (for silyl linkers it is the silyl group, for trityl linkers it is the triphenylmethyl moiety, and for the triazene linker it is the 1-aryltriazenyl group, etc.). The spacer is, therefore, the part between the linker and the resin as depicted in Figure 6.1.1. [Pg.452]

Trityl-based resins are highly acid-labile. The steric hindrance of the linker prevents diketopiperazine formation and the resins are recommended for Pro and Gly C-terminal peptides. Extremely mild acidolysis conditions enable the cleavage of protected peptide segments from the resin. These resins are commercially available as their chloride or alcohol precursors. The trityl chloride resin is extremely moisture-sensitive, so reagents and glassware should be carefully dried before use to avoid hydrolysis into the alcohol form. It is necessary to activate the trityl alcohol precursor and it is highly recommended to reactivate the chloride just before use see Note 4). After activation, attachment of the first residue occurs by reaction with the Fmoc amino acid derivative in the presence of a base. This reaction does not involve an activated species, so it is free from epimerization. Special precautions should be taken for Cys and His residues that are particularly sensitive to epimerization during activation (Table 2). [Pg.12]

Coupling of 4-(4-hydroxymethyl-3-methoxyphenoxy)-butyric acid (HMPB, for synthesis of peptide acids) or p-[(R S)-a-[l- (9H- fluorenyl- methoxyform-amido]- 2,4- dimethoxybenzyl] - phenoxyacetic acid (modified Rink linker, for synthesis of carboxamide peptides) linkers to MBHA resin For Fmoc chemistry several types of solid supports are available, which include hydroxymethyl-based, aminomethyl-based, and trityl chloride resins. We describe the use of the MBHA resin. In this case the respective linker (to achieve peptide acid or amide) is coupled to the resin and first amino acid is then coupled to the linker. Attachment of the linker to the resin is a reaction between the carboxyl-group of the linker and amino-group of the MBHA resin. Commercially available resins with linkers already attached could also be used. [Pg.247]

Fmoc-D-cycloserine (4-aminoisoxazolidine-3-one) and its enantiomer were immobilized on SASRIN resin or 2-chlorotrityl linker resins using Mitsunobu-type reaction or direct tritylation, respectively. The loading of the resulting resins (0.59-0.69 mmol g) was determined by spectrophotometry of the in rr/ -generated piperidine-dibenzofulvene... [Pg.421]

Photoacoustic spectra of resin samples have also been reported (16,17). The photoacoustic spectrum of TentaGel S beads coupled via a trityl linker with Fmoc-protected tryptophan is shown in Fig. 4. Compared with the photoacoustic spectrum of native aminoethyl TentaGel S beads, the appearance of diverse carbonyl bands is clearly seen the ester band of the linker at 1750 cm-1, the carbamate band of Fmoc protecting group at 1723 cm-1, and the amide I band at 1660 cm-1. [Pg.71]

For combinatorial chemistry applications, high-quality FT-Raman spectra can be obtained directly from resin beads, i.e., no cleavage of the molecules from the polymeric support is necessary. This is shown in Fig. 5, where the spectra of TentaGel S beads coupled via a trityl linker with Fmoc-protected tryptophan and the native aminoethyl TentaGel S beads are overlaid. As expected, significant differences in the spectra occur in the spectral region between 1620 and 1500 cm-1 where aromatic rings show pronounced Raman activity. [Pg.74]

Resins/linkers used Wang, Rink, NpSSM, THP, trityl. [Pg.44]

Cl Cl 6 p r= /= MeNHOH OH r= Y nA/om 0 0 [26] Only one example of nucleophilic cleavage with hydrox-ylamine has been described. Recently, many different hydroxylamine-based linkers have been described based on attachement of hydrox-ylamine to trityl-, Wang-, Sasrin- or Rink-resin. [26] [33] [175-177]... [Pg.51]


See other pages where Linker Trityl resins is mentioned: [Pg.138]    [Pg.138]    [Pg.412]    [Pg.500]    [Pg.151]    [Pg.188]    [Pg.169]    [Pg.356]    [Pg.198]    [Pg.153]    [Pg.215]    [Pg.555]    [Pg.139]    [Pg.77]    [Pg.251]    [Pg.44]    [Pg.77]    [Pg.225]    [Pg.298]    [Pg.294]    [Pg.376]    [Pg.272]    [Pg.44]    [Pg.20]    [Pg.918]    [Pg.919]    [Pg.128]    [Pg.417]    [Pg.756]    [Pg.169]   
See also in sourсe #XX -- [ Pg.455 ]




SEARCH



Linkers trityl

Trityl

Trityl linker

Tritylation

Trityls

© 2024 chempedia.info