Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limiting reactant, determine

STRATEGY First, the limiting reactant must be identified (Toolbox M.l). This limiting reactant determines the theoretical yield of the reaction, and so we use it to calculate the theoretical amount of product by Method 2 in Toolbox L.l. The percentage yield is the ratio of the mass produced to the theoretical mass times 100. Molar masses are j calculated using the information in the periodic table inside the front cover of this i book. [Pg.119]

In the examples above, one reactant was present in excess. One reactant was completely consumed, and some of the other reactant would be left over. The reactant that is used up first is called the limiting reactant (L.R.). This reactant really determines the amount of product being formed. How is the limiting reactant determined You can t assume it is the reactant in the smallest amount, since the reaction stoichiometry must be considered. There are generally two ways to determine which reactant is the limiting reactant ... [Pg.92]

The reactant that is completely used up in a chemical reaction is called the limiting reactant. In other words, the limiting reactant determines how much product is produced. When the limiting reactant is used up, the reaction stops. In real-life situations, there is almost always a limiting reactant. [Pg.252]

Write a balanced chemical equation for the reaction. Find the amount (in mol) of each reactant, using its volume and concentration. Identify the limiting reactant. Determine the amount (in mol) of mercury(II) sulfide that forms. Calculate the mass of mercury(II) sulfide that precipitates. [Pg.353]

Often in reactions, the reactants are not consumed at exactly the same time. Then one of the reactants, called the limiting reactant, determines the maximum amount of product that can form. [Pg.300]

C is the concentration of limiting reactant in mol/L, c is the chemiluminescence quantum yield in ein/mol, and P is a photopic factor that is determined by the sensitivity of the human eye to the spectral distribution of the light. Because the human eye is most responsive to yellow light, where the photopic factor for a yellow fluorescer such as fluorescein can be as high as 0.85, blue or red formulations have inherently lower light capacities. [Pg.273]

In cases where the reactants involved are not present in the proper stoichiometric ratios, the limiting reactant will have to be determined and the excess amounts of the other reactants calculated. It is safe to assume that unconsumed reactants and inert components exit with the products in their original forms. Consider the following example. [Pg.372]

In situations such as this, a distinction is made between the excess reactant (Sb) and the limiting reactant, I2. The amount of product formed is determined (limited) by the amount of limiting reactant With 3.00 mol of 1 only 2.00 mol of Sbl3 is obtained, regardless of how large an excess of Sb is used. [Pg.64]

Often you will be given the amounts of two different reactants and asked to determine which is the limiting reactant, to calculate the theoretical yield of the product and to find how much of the excess reactant is unused. To do so, it helps to follow a systematic, four-step procedure. [Pg.64]

Determine the limiting reactant and the theoretical yield when... [Pg.64]

Make a table like the one above and determine the number of moles of acetic acid (HAc) and acetate ion (Ac-) after the reaction is complete. Since the stoichiometric ratios are 1 1, the limiting reactant is the one with the smaller number of moles. [Pg.388]

In some cases, we must determine by calculation which is the limiting reactant. For example, from the equation... [Pg.117]

Step 3 Determine which reactant is Because 3.12 mol H20 is required and 5.55 mol the limiting reactant. H20 is supplied, all the calcium carbide can react ... [Pg.119]

In Section F, we saw that one technique used in modern chemical laboratories to determine the empirical formulas of organic compounds is combustion analysis. We are now in a position to understand the basis of the technique, because it makes use of the concept of limiting reactant. [Pg.120]

A reaction that is carried out under limiting reactant conditions nevertheless has a yield that generally will be less than 100%. The reasons why reactions yield less than the theoretical amounts, given in Section 4-1. apply to all reactions. When a reaction operates under limiting reactant conditions, we calculate the theoretical yield assuming that the limiting reactant will be completely consumed. We then determine the percent yield as described in Section 4A. Example shows how to do this. [Pg.222]

The problem asks for a yield, so we identify this as a yield problem. In addition, we recognize this as a limiting reactant situation because we are given the masses of both starting materials. First, identify the limiting reactant by working with moles and stoichiometric coefficients then carry out standard stoichiometry calculations to determine the theoretical amount that could form. A table of amounts helps organize these calculations. Calculate the percent yield from the theoretical amount and the actual amount formed. [Pg.223]

We determine the entries in the change row using the amount of the limiting reactant and stoichiometric... [Pg.223]

Masses and number ratios cannot be used to determine the limiting reactant" in bicycle manufacture either. Five chains are fewer in number than eight wheels and have less mass than eight wheels. Nevertheless, the wheels are used up before the... [Pg.224]

C04-0041. Several examples of chemical reasoning are introduced in this chapter. Write out the reasoning steps that you will follow in (a) balancing a chemical equation (b) identifying the limiting reactant (c) determining whether a precipitate forms and (d) computing a reaction yield. [Pg.261]

X 10 kg of each reactant. Construct a table of amounts, identify the limiting reactant, and determine the maximum mass of each product that could be produced. [Pg.266]

We have data for the amounts of both starting materials, so this is a limiting reactant problem. Given the chemical equation, the first step in a limiting reactant problem is to determine the number of moles of each starting material present at the beginning of the reaction. Next compute ratios of moles to coefficients to identify the limiting reactant. After that, a table of amounts summarizes the stoichiometry. [Pg.320]

The quantitative treatment of a reaction equilibrium usually involves one of two things. Either the equilibrium constant must be computed from a knowledge of concentrations, or equilibrium concentrations must be determined from a knowledge of initial conditions and Kgq. In this section, we describe the basic reasoning and techniques needed to solve equilibrium problems. Stoichiometry plays a major role in equilibrium calculations, so you may want to review the techniques described in Chapter 4, particularly Section 4- on limiting reactants. [Pg.1163]

When two substances react, they react in exact amounts. You can determine what amounts of the two reactants are needed to react completely with each other by means of mole ratios based on the balanced chemical equation for the reaction. In the laboratory, precise amounts of the reactants are rarely used in a reaction. Usually, there is an excess of one of the reactants. As soon as the other reactant is used up, the reaction stops. The reactant that is used up is called the limiting reactant. Based on the quantities of each reactant and the balanced chemical equation, you can predict which substance in a reaction is the limiting reactant. [Pg.89]

Collecting and Interpreting Data Based on your observations, describe which substance was the limiting reactant at the end of step 5, step 6, and step 7. How were you able to determine this ... [Pg.91]

The variable / depends on the particular species chosen as a reference substance. In general, the initial mole numbers of the reactants do not constitute simple stoichiometric ratios, and the number of moles of product that may be formed is limited by the amount of one of the reactants present in the system. If the extent of reaction is not limited by thermodynamic equilibrium constraints, this limiting reagent is the one that determines the maximum possible value of the extent of reaction ( max). We should refer our fractional conversions to this stoichiometrically limiting reactant if / is to lie between zero and unity. Consequently, the treatment used in subsequent chapters will define fractional conversions in terms of the limiting reactant. [Pg.3]


See other pages where Limiting reactant, determine is mentioned: [Pg.44]    [Pg.430]    [Pg.1109]    [Pg.929]    [Pg.948]    [Pg.128]    [Pg.44]    [Pg.430]    [Pg.1109]    [Pg.929]    [Pg.948]    [Pg.128]    [Pg.345]    [Pg.121]    [Pg.123]    [Pg.124]    [Pg.273]    [Pg.229]    [Pg.230]    [Pg.266]    [Pg.204]    [Pg.44]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



© 2024 chempedia.info