Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limiting current approach

The liquid fuel crossover can also be measured using the limiting current approach discussed above. Humidified nitrogen or other inert gas flows through the cathode as it is polarized to oxidize any crossover fuel. The limiting current is the crossover current density at the cell conditions. [Pg.469]

Let us see now what happens in a similar linear scan voltammetric experiment, but utilizing a stirred solution. Under these conditions, the bulk concentration (C0(b, t)) is maintained at a distance S by the stilling. It is not influenced by the surface electron transfer reaction (as long as the ratio of electrode area to solution volume is small). The slope of the concentration-distance profile [(CQ(b, t) — Co(0, /))/r)] is thus determined solely by the change in the surface concentration (Co(0, /)). Hence, the decrease in Co(0, t) duiing the potential scan (around E°) results in a sharp rise in the current. When a potential more negative than E by 118 mV is reached, Co(0, t) approaches zero, and a limiting current (if) is achieved ... [Pg.10]

Much has been published about simulations of research and development (R D), but in the area of research process improvement there are still many challenges. This chapter consists of two main parts, covering current approaches, which have met limited acceptance, and newer approaches aimed more directly at overcoming the most likely areas of cognitive difficulty that research managers face when making decisions on performance improvement. [Pg.248]

Little is known of how the biosynthetic metabolon is assembled, what mechanisms control the membrane-specific targeting, and how the conversions to apocarotenoids occur. Yet the current approach to drive import of bacterial or plant genes is to use transit sequences of a stromal protein that may limit the effectiveness of the transgene. In addition, for specific applications of controlling carotenoid composition, we need to better understand the interactions of the various enzymes,... [Pg.383]

FIG. 24 Steady-state diffusion-limited current for the reduction of oxygen in water at an UME approaching a water-DCE (O) and a water-NB (A) interface. The solid lines are the characteristics predicted theoretically for no interfacial kinetic barrier to transfer and for y = 1.2, Aj = 5.5 (top solid curve) or y = 0.58, = 3.8 (bottom solid curve). The lower and upper dashed lines denote the... [Pg.322]

FIG. 28 Normalized steady-state diffusion-limited current vs. UME-interface separation for the reduction of oxygen at an UME approaching an air-water interface with 1-octadecanol monolayer coverage (O)- From top to bottom, the curves correspond to an uncompressed monolayer and surface pressures of 5, 10, 20, 30, 40, and 50 mN m . The solid lines represent the theoretical behavior for reversible transfer in an aerated atmosphere, with zero-order rate constants for oxygen transfer from air to water, h / Q mol cm s of 6.7, 3.7, 3.3, 2.5, 1.8, 1.7, and 1.3. (Reprinted from Ref. 19. Copyright 1998 American Chemical Society.)... [Pg.326]

In order to understand current approaches for prevention and control of biofilms, we must first consider the reasons for the failure of conventional antimicrobial protocols. There are thought to be three main reasons as to why biofilm bacteria out-survive their planktonic counterparts during antimicrobial treatments (reviewed by McBain et a/.16).These are i) poor penetration of antimicrobial compounds due to the presence and turn-over of exopolymer slime (glycocalyx) ii) the imposition of extreme nutrient limitation within the depths of the biofilm community and the co-incident expression of metabolically-dormant, recalcitrant phenotypes and (iii) the expression of attachment-specific phenotypes that are radically different and intrinsically less susceptible than unattached ones. [Pg.42]

The dimensionless limiting current density N represents the ratio of ohmic potential drop to the concentration overpotential at the electrode. A large value of N implies that the ohmic resistance tends to be the controlling factor for the current distribution. For small values of N, the concentration overpotential is large and the mass transfer tends to be the rate-limiting step of the overall process. The dimensionless exchange current density J represents the ratio of the ohmic potential drop to the activation overpotential. When both N and J approach infinity, one obtains the geometrically dependent primary current distribution. [Pg.188]

The concentration overpotential rjc is the component directly responsible for the steep increase in potential observed as the current approaches the limiting current, since the Nemst potential difference (Eq. 6) becomes very large as the concentration of the reacting ion at the electrode approaches... [Pg.224]

Alternatively, one may control the electrode potential and monitor the current. This potentiodynamic approach is relatively easy to accomplish by use of a constant-voltage source if the counterelectrode also functions as the reference electrode. As indicated in the previous section, this may lead to various undesirable effects if a sizable ohmic potential drop exists between the electrodes, or if the overpotential of the counterelectrode is strongly dependent on current. The potential of the working electrode can be controlled instead with respect to a separate reference electrode by using a potentiostat. The electrode potential may be varied in small increments or continuously. It is also possible to impose the limiting-current condition instantaneously by applying a potential step. [Pg.229]

Experimental results obtained at a rotating-disk electrode by Selman and Tobias (S10) indicate that this order-of-magnitude difference in the time of approach to the limiting current, between linear current increases, on the one hand, and the concentration-step method, on the other, is a general feature of forced-convection mass transfer. In these experiments the limiting current of ferricyanide reduction was generated by current ramps, as well as by potential scans. The apparent limiting current was taken to be the current value at the inflection point in the current-potential curve. [Pg.242]

Equation (23) implies that the current density is uniformly distributed at all times. In reality, when the entire electrode has reached the limiting condition, the distribution of current is not uniform this distribution will be determined by the relative thickness of the developing concentration boundary layer along the electrode. To apply the superposition theorem to mass transfer at electrodes with a nonuniform limiting-current distribution, the local current density throughout the approach to the limiting current should be known. [Pg.244]

At which point in the approach to the limiting current (a certain... [Pg.249]

As discussed in Section IV,E, it is necessary, as well as convenient, in studies such as these to divide the electrode into several insulated sections in order to make accurate limiting-current measurements otherwise the limiting current may be obscured. A limiting-current curve is then obtained for each insulated section. This technique, first introduced by Fenech and Tobias (F3), requires that the potential be kept equal on the various sections as limiting current is approached. Sectional currents are therefore measured by means of potential drop through low-ohmic precision resistors. [Pg.268]

The second bracket contains the aspect ratio. The group in the first bracket is a measure of the approach to the limiting current modified by a total overpotential. The authors describe this group as a ratio of mass-transfer resistance to kinetic resistance. [Pg.187]


See other pages where Limiting current approach is mentioned: [Pg.199]    [Pg.144]    [Pg.271]    [Pg.835]    [Pg.372]    [Pg.468]    [Pg.199]    [Pg.144]    [Pg.271]    [Pg.835]    [Pg.372]    [Pg.468]    [Pg.2031]    [Pg.227]    [Pg.594]    [Pg.182]    [Pg.7]    [Pg.461]    [Pg.97]    [Pg.68]    [Pg.220]    [Pg.375]    [Pg.153]    [Pg.162]    [Pg.296]    [Pg.33]    [Pg.211]    [Pg.228]    [Pg.228]    [Pg.229]    [Pg.241]    [Pg.244]    [Pg.244]    [Pg.246]    [Pg.249]    [Pg.250]    [Pg.251]    [Pg.263]    [Pg.185]   
See also in sourсe #XX -- [ Pg.228 ]

See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Current limit

Limitation current

Limited currents

Limiting current gradual approach

Limiting currents

© 2024 chempedia.info