Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ligands transition metal catalysis

Many transition metal complexes dissolve readily in ionic liquids, which enables their use as solvents for transition metal catalysis. Sufficient solubility for a wide range of catalyst complexes is an obvious, but not trivial, prerequisite for a versatile solvent for homogenous catalysis. Some of the other approaches to the replacement of traditional volatile organic solvents by greener alternatives in transition metal catalysis, namely the use of supercritical CO2 or perfluorinated solvents, very often suffer from low catalyst solubility. This limitation is usually overcome by use of special ligand systems, which have to be synthesized prior to the catalytic reaction. [Pg.213]

Ionic liquids formed by treatment of a halide salt with a Lewis acid (such as chloro-aluminate or chlorostannate melts) generally act both as solvent and as co-catalyst in transition metal catalysis. The reason for this is that the Lewis acidity or basicity, which is always present (at least latently), results in strong interactions with the catalyst complex. In many cases, the Lewis acidity of an ionic liquid is used to convert the neutral catalyst precursor into the corresponding cationic active form. The activation of Cp2TiCl2 [26] and (ligand)2NiCl2 [27] in acidic chloroaluminate melts and the activation of (PR3)2PtCl2 in chlorostannate melts [28] are examples of this land of activation (Eqs. 5.2-1, 5.2-2, and 5.2-3). [Pg.221]

Extending the same concept of a planar chiral nucleophilic or basic heterocyclic Fe-sandwich complex, aza-ferrocenes 65 were prepared. The latter have also been successfully applied as bidentate ligands in transition metal catalysis [85]. [Pg.163]

Transition metal-catalysed reactions have emerged as powerful tools for carbon-carbon (C-C) bond formation [1], Cross-coupling reactions (Suzuki-Miyaura, Mizoroki-Heck, Stille, etc.) are recognised to be extremely reliable, robust and versatile. However, some other catalysed arylation reactions have been studied and have been reported to be very efficient [2]. In recent years, A -heterocyclic carbenes (NHC) have been extensively studied and their use as ligands for transition-metal catalysis has allowed for the significant improvement of many reactions [3]. This chapter highlights the use of NHC-bearing complexes in those arylation reactions. [Pg.191]

The enantiopure l-chloro-2,5-dimethylphospholane 2 is now available from the corresponding 1-trimethylsilylphospholane 1. The new phospholane 2 was used as an electrophilic building block in a wide range of coupling reactions giving rise to new phospholanes. These proved to be valuable as chiral ligands in transition metals catalysis with Rh, Ir or Ru complexes. [Pg.211]

Methods in asymmetric synthesis, particularly those which employ transition metal catalysis, have and continue to contribute enormously to the synthetic chemists armoury and, providing both enantiomers of the catalyst ligand are available, one can synthesise either enantiomer of a chiral intermediate at will. [Pg.58]

During the coverage period of this chapter, reviews have appeared on the following topics reactions of electrophiles with polyfluorinated alkenes, the mechanisms of intramolecular hydroacylation and hydrosilylation, Prins reaction (reviewed and redefined), synthesis of esters of /3-amino acids by Michael addition of amines and metal amides to esters of a,/3-unsaturated carboxylic acids," the 1,4-addition of benzotriazole-stabilized carbanions to Michael acceptors, control of asymmetry in Michael additions via the use of nucleophiles bearing chiral centres, a-unsaturated systems with the chirality at the y-position, and the presence of chiral ligands or other chiral mediators, syntheses of carbo- and hetero-cyclic compounds via Michael addition of enolates and activated phenols, respectively, to o ,jS-unsaturated nitriles, and transition metal catalysis of the Michael addition of 1,3-dicarbonyl compounds. ... [Pg.419]

The manifold intermediates in homogeneous transition-metal catalysis are certainly metal complexes and therefore show a behaviour like ordinary coordination compounds associations of phosphorus donors open up multifarious additional controls. Both, substrates and P ligands are Lewis bases that we have to consider and that compete at the coordination centers of the metal, leading to competitive, non-competitive or uncompetitive activation or inhibition processes in analogy to the terminology of enzyme chemistry... [Pg.77]

In the discussion of the property-specific control of a directing ligand in homogeneous transition-metal catalysis, one has to be sure that the results of the considered experiments are comparable. The ligand influences different intermediates of a catalytic system in more or less different ways. This can result in a somewhat contradic-... [Pg.98]

New Supramolecular Approaches in Transition Metal Catalysis Template-Ligand Assisted Catalyst Encapsulation, Self-Assembled Ligands and Supramolecular Catalyst Immobilization... [Pg.199]

Self-Assembled Ligands in Transition Metal Catalysis... [Pg.210]

S.3 Self-Assembled Ligands In Transition Metal Catalysis 217... [Pg.217]

A modular approach to structurally diverse bidentate chelate ligands for transition metal catalysis. Chem,-Eur, J, 6,2874-2894. [Pg.253]


See other pages where Ligands transition metal catalysis is mentioned: [Pg.1078]    [Pg.1078]    [Pg.300]    [Pg.65]    [Pg.578]    [Pg.470]    [Pg.342]    [Pg.510]    [Pg.522]    [Pg.535]    [Pg.545]    [Pg.169]    [Pg.1444]    [Pg.221]    [Pg.39]    [Pg.7]    [Pg.232]    [Pg.253]    [Pg.1109]    [Pg.157]    [Pg.163]    [Pg.358]    [Pg.699]    [Pg.1109]    [Pg.199]    [Pg.199]    [Pg.200]    [Pg.214]    [Pg.228]    [Pg.231]    [Pg.231]    [Pg.252]   


SEARCH



Catalysis transition metal

Jafarpour. Laleh. and Nolan, Steven P Transition-Metal Systems Bearing a Nucleophilic Carbene Ancillary Ligand from Thermochemistry to Catalysis

Self-Assembled Ligands in Transition Metal Catalysis

Transition catalysis

Transition ligand

Transition metal-catalysis metals

Transition metals ligands

© 2024 chempedia.info