Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ligand toxic

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

Chiral Chromatography. Chiral chromatography is used for the analysis of enantiomers, most useful for separations of pharmaceuticals and biochemical compounds (see Biopolymers, analytical techniques). There are several types of chiral stationary phases those that use attractive interactions, metal ligands, inclusion complexes, and protein complexes. The separation of optical isomers has important ramifications, especially in biochemistry and pharmaceutical chemistry, where one form of a compound may be bioactive and the other inactive, inhibitory, or toxic. [Pg.110]

On the other hand, the corresponding tin precursor (63) undergoes smooth cycloaddition with a wide variety of aldehydes to produce the desired methylene-tetrahydrofnran in good yields [32, 33]. Thus prenylaldehyde reacts with (63) to give cleanly the cycloadduct (64), whereas the reaction with the silyl precursor (1) yields only decomposition products (Scheme 2.20) [31]. This smooth cycloaddition is attributed to the improved reactivity of the stannyl ether (65) towards the 7t-allyl ligand. Although the reactions of (63) with aldehydes are quite robust, the use of a tin reagent as precursor for TMM presents drawbacks such as cost, stability, toxicity, and difficult purification of products. [Pg.71]

The actual catalyst is a complex formed from osmium tetroxide and a chiral ligand, e.g. dihydroquinine (DHQ) 9, dihydroquinidine (DHQD), Zj -dihydroqui-nine-phthalazine 10 or the respective dihydroquinidine derivative. The expensive and toxic osmium tetroxide is employed in small amounts only, together with a less expensive co-oxidant, e.g. potassium hexacyanoferrate(lll), which is used in stoichiometric quantities. The chiral ligand is also required in small amounts only. For the bench chemist, the procedure for the asymmetric fihydroxylation has been simplified with commercially available mixtures of reagents, e.g. AD-mix-a or AD-mix-/3, ° containing the appropriate cinchona alkaloid derivative ... [Pg.257]

Carboplatin (96) is significantly less toxic in the clinic than cisplatin. Most particularly, it is much less nephrotoxic. Use of a bidentate ligand also ensures formation of a ds complex. Its synthesis begins with cis-diammine platinum diiodide (94) which is reacted with silver sulfate to give cis-diaquodiam mine platinum sulfate (95). This is reacted with the barium salt of 1,1-cyclo-butanedicarboxylic acid to yield carboplatin [23],... [Pg.16]

Although Zn2+ is essential to human nutrition, compounds of the two elements below zinc in the periodic table. Cd and Fig. are extremely toxic. This reflects the fact that Cd2+ and Flg2+, in contrast to Zn2+, form very stable complexes with ligands containing sulfur atoms. As a result, these two cations react with and thereby deactivate enzymes containing —SH groups. [Pg.550]

The concept of drug development is based on the findings that retinoid receptors (RARs and RXRs) offer a new approach by targeting different genes depending on the activated retinoid receptor complexes. The multiplicity of these retinoid signaling pathways affords potential for therapeutic opportunity as well as retinoid therapy associated undesired side effects. It is possible that the indiscriminate activation of all pathways by nonspecific retinoid ligands could lead to unacceptable side effects so that any enhanced efficacy would be obtained at the cost of enhanced toxicity. [Pg.1072]

The development of ligands selective for individual receptor subtypes relevant to a targeted disease could decrease these toxic effects thereby improving the therapeutic index. Two new arotinoids are already available for topical use in skin diseases. These are tazarotenic acid (tazarotene) and 6-[3-(l-adamanty 1)-... [Pg.1072]

Modem cross coupling chemistry is heavily dominated by the use of palladium and nickel complexes as the catalysts, which show an impressively wide scope and an excellent compatibility with many functional groups.2 This favorable application profile usually overcompensates the disadvantages resulting from the high price of the palladium precursors, the concerns about the toxicity of nickel salts, the need for ancillary ligands to render the complexes sufficiently active and stable, and the extended reaction times that are necessary in certain cases. [Pg.18]

Many other shapes are possible for complexes. The simplest are linear, with coordination number 2. An example is dimethylmercury(O), Hg(CI l,)2 (4), which is a toxic compound formed by bacterial action on aqueous solutions of I Ig ions. Coordination numbers as high as 12 are found for members of the / block, but they are rare in the d block. One interesting type of d-mctal compound in which there are 10 links between the ligands and the central metal ion is ferrocene, dicyciopentadi-enyliron(O), [Fe(C5H5)2] (5). Ferrocene is an aptly named sandwich compound, with the two planar cyclopentadienyl ligands the bread and the metal atom the filling. The formal name for a sandwich compound is a metallocene. [Pg.793]


See other pages where Ligand toxic is mentioned: [Pg.101]    [Pg.29]    [Pg.382]    [Pg.167]    [Pg.318]    [Pg.318]    [Pg.371]    [Pg.101]    [Pg.29]    [Pg.382]    [Pg.167]    [Pg.318]    [Pg.318]    [Pg.371]    [Pg.398]    [Pg.547]    [Pg.56]    [Pg.475]    [Pg.476]    [Pg.174]    [Pg.300]    [Pg.359]    [Pg.608]    [Pg.305]    [Pg.496]    [Pg.46]    [Pg.156]    [Pg.158]    [Pg.248]    [Pg.257]    [Pg.1009]    [Pg.1010]    [Pg.1011]    [Pg.1256]    [Pg.48]    [Pg.163]    [Pg.789]    [Pg.414]    [Pg.425]    [Pg.427]    [Pg.428]    [Pg.430]    [Pg.45]    [Pg.45]    [Pg.46]    [Pg.388]    [Pg.399]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Toxicity ligand based models

© 2024 chempedia.info