Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acidity adsorption

As mentioned on p. 108, Spiridinova et a/.40,41 only find evidence for Lewis acid adsorption sites, whereas Goldberg et al 2 and Nowinska43 also find evidence for Br nsted acid sites. Similarly Belokopytov et al. 8 observe the adsorption of NH3 on both types of acid centers, Lewis sites showing a greater acid strength. On the other hand Inomata et al28,81,82 report that on V205 itself adsorption of NH3 only occurs as NH4 and that adsorption as... [Pg.113]

In additional experiments it has been shown that iron is interacting with platinum, i.e., it is located in atomic closeness to Pt. In the bimetallic nanocluster, due to the high electropositivity of iron, there is an electron transfer from iron to platinum. The net result is the formation of electron deficient iron species at the Pt surface. The authors suggested that these electron-deficient or low-valent iron species on the Pt surface might act as Lewis acid adsorption sites. These sites, due... [Pg.17]

As it concerns Lewis acidity, adsorption of hindered nitriles reveals the presence of such sites at the external surface of H-FER, H-MFI and H-MOR, after outgassing at 673-773 K. Recently, van Bokhoven et aL showed that in these conditions tri-coordinated Al species can be detected by in-situ XANES at the Al-K-edge on H-MOR and H-BEA [105]. These species were proposed to be at framework positions, though it is not possible to determine whether of the internal or external surface. [Pg.248]

Considering the fact that pure silica xerogels were scarcely ammonolyzed under the same condition, it was concluded that Lewis acid adsorption (shown below) at B and/or Al sites (Morrow and Cody, 1976) plays an important role in the nitrogen up-take. [Pg.172]

Reactions A-E which follow have been proposed by Brinker and Haaland [96] as possible schemes for surface nitridation via ammonolysis. Lewis acid adsorption (A) is a possible scheme for electrophilic metals capable of formally increasing their coordination numbers, e.g., trigonally coordinated boron or tetrahedrally coordinated aluminum. Lewis acid adsorption may be followed by dissociative chemisorption as in B. This scheme depends on the Lewis acidity of the metal site but does not necessarily involve a stable Intermediate with a formal Increase in coordination number. As discussed in the previous section, dehydroxylation of the silica surface at temperatures above 250°C progressively creates strained surface silicon species with enhanced Lewis acidity. The Importance of scheme B for silica is therefore expected to increase with the extent of suface dehydroxylation. Reaction C was proposed by Mulfinger [97] to account for dehydroxylation of silica... [Pg.797]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

Donor strengths, taken from ref. 207b, based upon the solvent effect on the symmetric stretching frequency of the soft Lewis acid HgBr2. Gutmann s donor number taken from ref 207b, based upon AHr for the process of coordination of an isolated solvent molecule to the moderately hard SbCL molecule in dichioroethane. ° Bulk donor number calculated as described in ref 209 from the solvent effect on the adsorption spectrum of VO(acac)2. Taken from ref 58, based on the NMR chemical shift of triethylphosphine oxide in the respective pure solvent. Taken from ref 61, based on the solvatochromic shift of a pyridinium-A-phenoxide betaine dye. [Pg.30]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

Cations at the surface possess Lewis acidity, i.e. they behave as electron acceptors. The oxygen ions behave as proton acceptors and are thus Bronsted bases. This has consequences for adsorption, as we will see. According to Bronsted s concept of basicity, species capable of accepting a proton are called a base, while a Bronsted acid is a proton donor. In Lewis concept, every species that can accept an electron is an acid, while electron donors, such as molecules possessing electron lone pairs, are bases. Hence a Lewis base is in practice equivalent to a Bronsted base. However, the concepts of acidity are markedly different. [Pg.175]

Figure 5.10. Defects consisting of oxygen vacancies constitute adsorption sites on a Ti02 (110) surface. Note how CO binds with its lone-pair electrons on a Ti ion (a Lewis acid site). O2 dissociating on a defect furnishes an O atom that locally repairs the defect. CO2 may adsorb by coordinating to an O atom, thus forming a carbonate group. [Figure adapted from W. Gopel, C. Rocher and R. Feierabend, Phys. Rev. B 28 (1983) 3427.]... Figure 5.10. Defects consisting of oxygen vacancies constitute adsorption sites on a Ti02 (110) surface. Note how CO binds with its lone-pair electrons on a Ti ion (a Lewis acid site). O2 dissociating on a defect furnishes an O atom that locally repairs the defect. CO2 may adsorb by coordinating to an O atom, thus forming a carbonate group. [Figure adapted from W. Gopel, C. Rocher and R. Feierabend, Phys. Rev. B 28 (1983) 3427.]...
Explain the concepts of Lewis and Bronsted acidity. What are the consequences for adsorption on surfaces with Lewis acidity ... [Pg.406]

For the studied catechol methylation reaction the catalyst structure and surface properties can explain the catalytic behaviour As mentioned above, the reaction at 260-350°C has to be performed over the acid catalysts. Porchet et al. [2] have shown, by FTIR experiments, the strong adsorption of catechol on Lewis acid/basic sites of the Y-AI2O3 surface. These sites control the reaction mechanism. [Pg.180]

Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are... Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are...
Elanany, M., Koyama, M., Kubo, M. el al. (2005) Periodic density functional investigation of Lewis acid sites in zeolites Relative strength order as revealed from NH3 adsorption, Appl. Surf. Sci., 246, 96. [Pg.61]

The specific surface area of the fresh and used catalysts was measured by nitrogen adsorption method (Sorptometer 1900, Carlo Erba Instruments). The catalysts were outgassed at 473 K prior to the measurements and the Dubinin equation was used to calculate the specific surface area. The acidity of investigated samples was measured by infrared spectroscopy (ATI Mattson FTIR) by using pyridine (>99.5%, a.r.) as a probe molecule for qualitative and quantitative determination of both Bronstcd and Lewis acid sites (further denoted as BAS and LAS). The amounts of BAS and LAS were calculated from the intensities of corresponding spectral bands by using the molar extinction coefficients reported by Emeis (23). Full details of the acidity measurements are provided elsewhere (22). [Pg.281]

Adsorption enthalpies and vibrational frequencies of small molecules adsorbed on cation sites in zeolites are often related to acidity (either Bronsted or Lewis acidity of H+ and alkali metal cations, respectively) of particular sites. It is now well accepted that the local environment of the cation (the way it is coordinated with the framework oxygen atoms) affects both, vibrational dynamics and adsorption enthalpies of adsorbed molecules. Only recently it has been demonstrated that in addition to the interaction of one end of the molecule with the cation (effect from the bottom) also the interaction of the other end of the molecule with a second cation or with the zeolite framework (effect from the top) has a substantial effect on vibrational frequencies of the adsorbed molecule [1,2]. The effect from bottom mainly reflects the coordination of the metal cation with the framework - the tighter is the cation-framework coordination the lower is the ability of that cation to bind molecules and the smaller is the effect on the vibrational frequencies of adsorbed molecules. This effect is most prominent for Li+ cations [3-6], In this contribution we focus on the discussion of the effect from top. The interaction of acetonitrile (AN) and carbon monoxide with sodium exchanged zeolites Na-A (Si/AM) andNa-FER (Si/Al= 8.5 and 27) is investigated. [Pg.117]

In this work the methanol and methyl iodide conversion and their co-reaction are investigated on Fe-Beta zeolite without any oxygen. Partly Fe-ion-exchanged Beta-300 i.e. Fe-H-Beta-300 (shortly Fe-Beta-300) zeolite keeps the light acidity to a certain extent, however the presence of Fe ions (as transition metal, Fe is an excellent Lewis acid) can modify the reaction pathway. This Fe-Beta-300 has been tested already by low temperature peat pyrolysis [6], At present, the adsorption as well as desorption of methanol are followed-up by radiodetectors using ( -radioisotopic labeling [4, 7]. The... [Pg.341]

The NH4-Beta-300 (Zeolyst International, number denote Si02/Al203 molar ratio) was transformed to corresponding proton form using a step calcination procedure at 500 °C. H-Beta-300 was partially modified with Fe by repeated ion-exchange method (Fe(III)nitrate). The surface areas as well as acidities (Bronsted and Lewis acid sites) of Fe-Beta (iron content - 0.1 wt %) were determined by nitrogen adsorption and pyridine desorption at 250, 350 and 450 °C using FTIR spectroscopy [6]. [Pg.342]


See other pages where Lewis acidity adsorption is mentioned: [Pg.172]    [Pg.664]    [Pg.172]    [Pg.664]    [Pg.719]    [Pg.334]    [Pg.246]    [Pg.165]    [Pg.175]    [Pg.461]    [Pg.179]    [Pg.531]    [Pg.532]    [Pg.268]    [Pg.90]    [Pg.75]    [Pg.586]    [Pg.591]    [Pg.624]    [Pg.102]    [Pg.104]    [Pg.108]    [Pg.353]    [Pg.298]    [Pg.309]    [Pg.100]    [Pg.223]    [Pg.395]    [Pg.396]    [Pg.32]    [Pg.237]    [Pg.51]    [Pg.51]    [Pg.281]    [Pg.282]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Acids adsorption

© 2024 chempedia.info