Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead, biomedical applications

Nanoparticles such as those of the heavy metals, like cadmium selenide, cadmium sulfide, lead sulfide, and cadmium telluride are potentially toxic [14,15]. The possible mechanisms by which nanoparticles cause toxicity inside cells are schematically shown in Fig. 2. They need to be coated or capped with low toxicity or nontoxic organic molecules or polymers (e.g., PEG) or with inorganic layers (e.g., ZnS and silica) for most of the biomedical applications. In fact, many biomedical imaging and detection applications of QDs encapsulated by complex molecules do not exhibit noticeable toxic effects [16]. One report shows that the tumor cells labeled with QDs survived in circulation and extravasated into tissues... [Pg.236]

The past two decades have produced a revival of interest in the synthesis of polyanhydrides for biomedical applications. These materials offer a unique combination of properties that includes hydrolytically labile backbone, hydrophobic bulk, and very flexible chemistry that can be combined with other functional groups to develop polymers with novel physical and chemical properties. This combination of properties leads to erosion kinetics that is primarily surface eroding and offers the potential to stabilize macromolecular drugs and extend release profiles from days to years. The microstructural characteristics and inhomogeneities of multi-component systems offer an additional dimension of drug release kinetics that can be exploited to tailor drug release profiles. [Pg.213]

Polyvinyl alcohol (PVA), which is a water soluble polyhidroxy polymer, is one of the widely used synthetic polymers for a variety of medical applications [197] because of easy preparation, excellent chemical resistance, and physical properties. [198] But it has poor stability in water because of its highly hydrophilic character. Therefore, to overcome this problem PVA should be insolubilized by copolymerization [43], grafting [199], crosslinking [200], and blending [201], These processes may lead a decrease in the hydrophilic character of PVA. Because of this reason these processes should be carried out in the presence of hydrophilic polymers. Polyfyinyl pyrrolidone), PVP, is one of the hydrophilic, biocompatible polymer and it is used in many biomedical applications [202] and separation processes to increase the hydrophilic character of the blended polymeric materials [203,204], An important factor in the development of new materials based on polymeric blends is the miscibility between the polymers in the mixture, because the degree of miscibility is directly related to the final properties of polymeric blends [205],... [Pg.156]

In recent years, CNTs have been receiving considerable attention because of their potential use in biomedical applications. Solubility of CNTs in aqueous media is a fundamental prerequisite to increase their biocompatibility. For this purpose several methods of dispersion and solubilisation have been developed leading to chemically modified CNTs (see Paragraph 2). The modification of carbon nanotubes also provides multiple sites for the attachment of several kinds of molecules, making functionalised CNTs a promising alternative for the delivery of therapeutic compounds. [Pg.33]

Nowadays, ESI is the leading member of the group of atmospheric pressure ionization (API) methods and the method of choice for liquid chromatography-mass spectrometry coupling (LC-MS, Chap. 12). [10-13] Currently, ESI and MALDI (Chap. 10) are the most commonly employed ionization methods and they opened doors to the widespread biological and biomedical application of mass spectrometry. [5,10,11,13-17] Moreover, ESI serves well for the analysis of ionic metal complexes [18,19] and other inorganic analytes. [20-22]... [Pg.441]

Biomaterials such as proteins/enzymes or DNA display highly selective catalytic and recognition properties. Au nanoparticles or nanorods show electronic, photonic and catalytic properties. The convergence of both types of materials gives rise to Au NP-biomolecule hybrids that represent a very active research area. The combination of properties leads to the appearance of biosensors due to the optical or electrical transduction of biological phenomena. Moreover, multifunctional Au NP-peptide hybrids can be used for targeting nuclear cells where genetic information is stored and could be useful for biomedical applications [146]. [Pg.163]

Isotopic distribution within an element will vary between living organisms depending on the biosynthetic pathways that lead to its formation. Furthermore, the rate at which a molecule crosses cellular membranes will depend on the molecule s isotopic distribution. Hence, detectable differences in isotopic composition can be observed in the products formed. Detection of adulterated vegetable oils, flavourings and fruit juices, as well as the study of metabolism in plants and numerous biomedical applications, use isotopic abundance as a tool. For example, the... [Pg.318]

Sensors incorporating glass or plastic optical fibers have demonstrated several advantages over electrosensors for biomedical applications. These sensors involve no electrical connections and hence are safe from that standpoint the leads are quite small and flexible they can be incorporated in catheters for multiple sensing where required, they can be implanted for relatively long periods. The fibers are considerably less than 1 millimeter in diameter. Where designed for simplicity, they often can be considered disposable. [Pg.1159]

Aliphatic polyesters are an attractive class of polymer that can be used in biomedical and pharmaceutical applications. One reason for the growing interest in this type of degradable polymer is that their physical and chemical properties can be varied over a wide range by, e.g., copolymerization and advanced macro-molecular architecture. The synthesis of novel polymer structures through ringopening polymerization has been studied for a number of years [1-5]. The development of macromolecules with strictly defined structures and properties, aimed at biomedical applications, leads to complex and advanced architecture and a diversification of the hydrolyzable polymers. [Pg.42]


See other pages where Lead, biomedical applications is mentioned: [Pg.413]    [Pg.236]    [Pg.155]    [Pg.156]    [Pg.21]    [Pg.168]    [Pg.11]    [Pg.240]    [Pg.253]    [Pg.119]    [Pg.41]    [Pg.284]    [Pg.191]    [Pg.55]    [Pg.248]    [Pg.149]    [Pg.303]    [Pg.114]    [Pg.3]    [Pg.176]    [Pg.330]    [Pg.949]    [Pg.257]    [Pg.31]    [Pg.163]    [Pg.262]    [Pg.175]    [Pg.103]    [Pg.317]    [Pg.127]    [Pg.149]    [Pg.235]    [Pg.158]    [Pg.160]    [Pg.251]    [Pg.129]    [Pg.151]    [Pg.4013]    [Pg.5498]    [Pg.89]    [Pg.173]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Biomedical applications

© 2024 chempedia.info