Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layers chemically bonded

Top mobile layer either entrapped or deposited as a separate layer Monolayer/composite layers chemically bonded to substrate... [Pg.114]

Other than the bonded phases already mentioned above, silica layers chemically bonded with ethyl and propanediol are commercially available. The latter is a weaker sorbent than silica gel but has comparable selectivity (Poole and Poole, 1991). [Pg.41]

The adsorption of nonelectrolytes at the solid-solution interface may be viewed in terms of two somewhat different physical pictures. In the first, the adsorption is confined to a monolayer next to the surface, with the implication that succeeding layers are virtually normal bulk solution. The picture is similar to that for the chemisorption of gases (see Chapter XVIII) and arises under the assumption that solute-solid interactions decay very rapidly with distance. Unlike the chemisorption of gases, however, the heat of adsorption from solution is usually small it is more comparable with heats of solution than with chemical bond energies. [Pg.390]

In the case of ion exchangers, the primary ions are chemically bonded into the ftamework of the polymer, and the exchange is between ions in the secondary layer. A few illustrations of these various types of processes follow. [Pg.412]

The adhesion between two solid particles has been treated. In addition to van der Waals forces, there can be an important electrostatic contribution due to charging of the particles on separation [76]. The adhesion of hematite particles to stainless steel in aqueous media increased with increasing ionic strength, contrary to intuition for like-charged surfaces, but explainable in terms of electrical double-layer theory [77,78]. Hematite particles appear to form physical bonds with glass surfaces and chemical bonds when adhering to gelatin [79]. [Pg.454]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well. Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well.
Surfaces that do not have strong surface chemical bonds that were broken tend to be nonpolar and are not readily wetted. Substances such as graphite and talc are examples that can be broken along weakly bonded layer planes without rupturing strong chemical bonds. These solids are naturally floatable. Also, polymeric particles possess... [Pg.1808]

For thin-film samples, abrupt changes in refractive indices at interfrees give rise to several complicated multiple reflection effects. Baselines become distorted into complex, sinusoidal, fringing patterns, and the intensities of absorption bands can be distorted by multiple reflections of the probe beam. These artifacts are difficult to model realistically and at present are probably the greatest limiters for quantitative work in thin films. Note, however, that these interferences are functions of the complex refractive index, thickness, and morphology of the layers. Thus, properly analyzed, useful information beyond that of chemical bonding potentially may be extracted from the FTIR speara. [Pg.425]

Elastic recoil spectrometry (ERS) is used for the specific detection of hydrogen ( H, H) in surface layers of thickness up to approximately 1 pm, and the determination of the concentration profile for each species as a function of depth below the sample s surfece. When carefully used, the technique is nondestructive, absolute, fast, and independent of the host matrix and its chemical bonding structure. Although it requires an accelerator source of MeV helium ions, the instrumentation is simple and the data interpretation is straightforward. [Pg.488]

Chemical adsorption (known as chemisorptioti) often, but not invariably, involves the formation of a chemical bond (i.e., the transfer of electrons) between the gas and the solid. In other words, a specific chemical compound one layer thick... [Pg.736]

The mechanism of chemical adhesion is probably best studied and demonstrated by the use of silanes as adhesion promoters. However, it must be emphasized that the formation of chemical bonds may not be the sole mechanism leading to adhesion. Details of the chemical bonding theory along with other more complex theories that particularly apply to silanes have been reviewed [48,63]. These are the Deformable Layer Hypothesis where the interfacial region allows stress relaxation to occur, the Restrained Layer Hypothesis in which an interphase of intermediate modulus is required for stress transfer, the Reversible Hydrolytic Bonding mechanism which combines the chemical bonding concept with stress relaxation through reversible hydrolysis and condensation reactions. [Pg.696]

Zorbax PSM packings are produced in three forms unmodified, trimethyl-silane modified, and diol modified. Modified Zorbax PSM packings are produced by chemically bonding a layer on the silica surface through siloxane bonds (Table 3.1). Silanized Zorbax PSM packings suppress adsorption effects and are the preferred choice when the mobile phase contains organic solvents. Unsilanized and diol modified Zorbax PSM packings should be used when the mobile phase consists of aqueous solvents. [Pg.77]

Quality of the adsorbent layer. Layers for HPTLC are prepared using specially purified silica gel with average particle diameter of 5-15 /mi and a narrow particle size distribution. The silica gel may be modified if necessary, e.g. chemically bonded layers are available commercially as reverse-phase plates. Layers prepared using these improved adsorbents give up to about 5000 theoretical plates and so provide a much improved performance over conventional TLC this enables more difficult separations to be effected using HPTLC, and also enables separations to be achieved in much shorter times. [Pg.232]


See other pages where Layers chemically bonded is mentioned: [Pg.178]    [Pg.97]    [Pg.798]    [Pg.923]    [Pg.2020]    [Pg.178]    [Pg.97]    [Pg.798]    [Pg.923]    [Pg.2020]    [Pg.381]    [Pg.395]    [Pg.455]    [Pg.452]    [Pg.44]    [Pg.451]    [Pg.48]    [Pg.250]    [Pg.518]    [Pg.208]    [Pg.505]    [Pg.48]    [Pg.137]    [Pg.117]    [Pg.118]    [Pg.2134]    [Pg.28]    [Pg.445]    [Pg.523]    [Pg.69]    [Pg.404]    [Pg.416]    [Pg.419]    [Pg.428]    [Pg.451]    [Pg.690]    [Pg.809]    [Pg.23]    [Pg.150]    [Pg.488]    [Pg.1175]   
See also in sourсe #XX -- [ Pg.523 ]




SEARCH



Bonding layer

© 2024 chempedia.info