Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layered structures, solid-state butadienes

Later, Tieke reported the UV- and y-irradiation polymerization of butadiene derivatives crystallized in perovskite-type layer structures [21,22]. He reported the solid-state polymerization of butadienes containing aminomethyl groups as pendant substituents that form layered perovskite halide salts to yield erythro-diisotactic 1,4-trans polymers. Interestingly, Tieke and his coworker determined the crystal structure of the polymerized compounds of some derivatives by X-ray diffraction [23,24]. From comparative X-ray studies of monomeric and polymeric crystals, a contraction of the lattice constant parallel to the polymer chain direction by approximately 8% is evident. Both the carboxylic acid and aminomethyl substituent groups are in an isotactic arrangement, resulting in diisotactic polymer chains. He also referred to the y-radiation polymerization of molecular crystals of the sorbic acid derivatives with a long alkyl chain as the N-substituent [25]. More recently, Schlitter and Beck reported the solid-state polymerization of lithium sorbate [26]. However, the details of topochemical polymerization of 1,3-diene monomers were not revealed until very recently. [Pg.267]

Lauher and Fowler et al. have proposed an elegant strategy for the control of topochemical polymerization based on the host-guest cocrystal concept. They used the ureylene and oxalamide functionality to form layered supramolecu-lar structures for the topochemically controlled polymerization of diacetylenes and 1,3-butadienes in the solid state [62,63]. [Pg.284]

Solid-State Polymerization of 1,4-Disubstituted Butadienes in Layered Structures... [Pg.61]

This article describes the solid state polymerization of 1,i-disubstituted butadiene derivatives in perovskite-type layer structures, in layered structures of organic ammonium halide salts, and in lipid layer structures. Recent investigations by spectroscopic methods and x-ray structure analyses are described. The studies clearly indicate that the photolysis in the crystalline state leads to the formation of 1,i-trans-polymers exclusively. Crystal structure analyses of monomeric and polymeric layer perovskites demonstrate that upon y-irradiation a stereoregular polymer is obtained in a lattice controlled polymerization. [Pg.61]

In recent years interest in these materials has grown mainly for physical reasons. The layer perovskites are looked at as model compounds for the study of magnetic properties in two-dimensional systems (J2) and as models for the study of structural phase transitions in lipid bilayer-type arrays ( ). The use of layer perovskites as a matrix for organic solid state reactions represents a fairly new research topic. First experiments were carried out studying the photolysis of butadiyne (diacetylene) derivatives (li-ZSl) For a corresponding study of the butadiene derivatives the compounds listed in Table I were synthesized. [Pg.63]


See other pages where Layered structures, solid-state butadienes is mentioned: [Pg.177]    [Pg.81]    [Pg.16]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 ]




SEARCH



1,3-Butadiene structure

Butadienes solid-state

Layer structures

Layered solids

Layered structure

Layered structures, solid-state

Layering structuration

Solid layer

Solid state structures

Structure states

© 2024 chempedia.info