Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lateral vestibular nucleus

Fig. 5. Drawing of the brainstem depicting neurons and pathways likely to use glutamate as a neurotransmitter. 1 = primary afferent inputs to the dorsal column nuclei (a), the solitary tract nucleus (b), and the cochlear nucleus (c) 2 = granule cell/parallel fibers in the dorsal cochlear nucleus 3 = calyces of Held in the medial nucleus of the trapezoid body 4 = cochlear nucleus inputs to the lateral superior olive 5 = input to the oculomotor nucleus from the ventral lateral vestibular nucleus 6 = input to the oculomotor nucleus from the abducens nucleus 7 = corticocollieular inputs 8 = spinal input to the periaqueductal gray 9 = inputs to the red nucleus and pontine nuclei from the cerebellar nuclei. For further details, see Section 3.3. Fig. 5. Drawing of the brainstem depicting neurons and pathways likely to use glutamate as a neurotransmitter. 1 = primary afferent inputs to the dorsal column nuclei (a), the solitary tract nucleus (b), and the cochlear nucleus (c) 2 = granule cell/parallel fibers in the dorsal cochlear nucleus 3 = calyces of Held in the medial nucleus of the trapezoid body 4 = cochlear nucleus inputs to the lateral superior olive 5 = input to the oculomotor nucleus from the ventral lateral vestibular nucleus 6 = input to the oculomotor nucleus from the abducens nucleus 7 = corticocollieular inputs 8 = spinal input to the periaqueductal gray 9 = inputs to the red nucleus and pontine nuclei from the cerebellar nuclei. For further details, see Section 3.3.
Nerve growth factor-like immunoreactivity was present in Purkinje cell somata and dendrites, with dense labelling in the paraflocculus, and in neurons of the cerebellar nuclei and the lateral vestibular nucleus of rat cerebellum (Nishio et ah, 1994). All but a few of the Purkinje cells of the adult rat cerebellum stain with an antiserum against basic fibroblast growth factor. Staining was observed in all cellular compartments (Matsuda et ah, 1992). [Pg.44]

The (central) cerebellar nuclei and the lateral vestibular nucleus of Deiters receive the axons of the Purkinje cells of the cerebellar cortex and serve as the main output stations of the cerebellum. The vermis and the flocculus also project to other vestibular nuclei, but here the Purkinje cell axons compete with vestibular root fibers, intrinsic and commissural vestibular connections and projections from the medial cerebellar nucleus and, therefore, are not the dominant afferent system. [Pg.138]

Fig. 103. The cerebellar nuclei of the cat. The transitional U-shaped region of the fastigial and posterior interposed nuclei is indicated by double hatching, be = brachium conjunctivum cr = restiform body DV = descending vestibular nucleus F = fastigial nucleus flo = floccular peduncle Ftail = tail of the fastigial nucleus lA = anterior interposed nucleus IP = posterior interposed nucleus L = lateral cerebellar nucleus LV = lateral vestibular nucleus MV = medial vestibular nucleus SV = superior vestibular nucleus u = uncinate tract Y = group y of Brodal and Pompeiano (1957). Fig. 103. The cerebellar nuclei of the cat. The transitional U-shaped region of the fastigial and posterior interposed nuclei is indicated by double hatching, be = brachium conjunctivum cr = restiform body DV = descending vestibular nucleus F = fastigial nucleus flo = floccular peduncle Ftail = tail of the fastigial nucleus lA = anterior interposed nucleus IP = posterior interposed nucleus L = lateral cerebellar nucleus LV = lateral vestibular nucleus MV = medial vestibular nucleus SV = superior vestibular nucleus u = uncinate tract Y = group y of Brodal and Pompeiano (1957).
Fig. 128. Diagrammatic representation of the corticonuclear projection of lobule V in Galago. There are at least six identifiable corticonuclear projection zones in the lobule V cortex. The vermis consists of zones A and B, the intermediate cortex of three zones C, - C3 and the lateral cortex of a single D zone, f = flocculus IC = intermediate cortex LC = lateral cortex Ivn = lateral vestibular nucleus 1-nia = lateral anterior interposed nucleus m - nia = medial anterior interposed nucleus m - nip = medial posterior interposed nucleus nl = lateral cerebellar nucleus nm = medial nucleus vc = vermal cortex. Haines and Rubertone (1979)... Fig. 128. Diagrammatic representation of the corticonuclear projection of lobule V in Galago. There are at least six identifiable corticonuclear projection zones in the lobule V cortex. The vermis consists of zones A and B, the intermediate cortex of three zones C, - C3 and the lateral cortex of a single D zone, f = flocculus IC = intermediate cortex LC = lateral cortex Ivn = lateral vestibular nucleus 1-nia = lateral anterior interposed nucleus m - nia = medial anterior interposed nucleus m - nip = medial posterior interposed nucleus nl = lateral cerebellar nucleus nm = medial nucleus vc = vermal cortex. Haines and Rubertone (1979)...
Fig. 129. Schematic drawing of the distribution of motilin-immunoreactive (M-i) Purkinje cells (open triangles) and glutamic acid decarboxylase-immunoreactive (GAD-i) Purkinje cells (filled circles) in a coronal section of rat cerebellum. M-i cells and GAD-i cells are both more concentrated in the flocculus and the paraflocculus than elsewhere. Both cell types occur in the vermis and participate in the formation of the sagittal microzones (arrows). M-i terminal axon projections in the deep cerebellar nuclei are heaviest in the dentate (D left side) and GAD-i projections are heaviest in the lateral vestibular nucleus (LV right side). 1 = interposed nucleus F = fastigial nucleus. Chan-Palay et al. (1981). Fig. 129. Schematic drawing of the distribution of motilin-immunoreactive (M-i) Purkinje cells (open triangles) and glutamic acid decarboxylase-immunoreactive (GAD-i) Purkinje cells (filled circles) in a coronal section of rat cerebellum. M-i cells and GAD-i cells are both more concentrated in the flocculus and the paraflocculus than elsewhere. Both cell types occur in the vermis and participate in the formation of the sagittal microzones (arrows). M-i terminal axon projections in the deep cerebellar nuclei are heaviest in the dentate (D left side) and GAD-i projections are heaviest in the lateral vestibular nucleus (LV right side). 1 = interposed nucleus F = fastigial nucleus. Chan-Palay et al. (1981).
Fig. 151. Diagram of the corticovestibular projections from flocculus, nodulus and uvula in Galago. Note complementarity between the projections of the flocculus and the caudal vermis. Ivn = lateral vestibular nucleus mvn = medial vestibular nucleus spvn = spinal vestibular nucleus svn= superior vestibular nucleus. Haines (1977a). Fig. 151. Diagram of the corticovestibular projections from flocculus, nodulus and uvula in Galago. Note complementarity between the projections of the flocculus and the caudal vermis. Ivn = lateral vestibular nucleus mvn = medial vestibular nucleus spvn = spinal vestibular nucleus svn= superior vestibular nucleus. Haines (1977a).
Fig. 152. Diagrams showing the topographic pattern of the projections from the various mediolateral levels of the tuber vermis (lobule VII) and the paramedian lobule to the cerebellar nuclear complex in the rat. A. Schematic diagram of the posterior surface of the cerebellum and subdivision of the tuber vermis and paramedian lobule, based on the topography of their projections. B. Schematic sagittal diagrams of the nuclear complex showing the terminal fields which receive projections from the individual subdivisions of the tuber vermis and paramedian lobule. AIN = anterior interposed nucleus cm = caudomedial sub-division of the medial nucleus Cop. pyr = copula pyramidis DLH = dorsolateral hump DLP = dorsolateral protuberance of the medial nucleus LN = lateral cerebellar nucleus LVN = lateral vestibular nucleus m = medial nucleus PIN = posterior interposed nucleus Pml = paramedian lobule. Umetani (1989). Fig. 152. Diagrams showing the topographic pattern of the projections from the various mediolateral levels of the tuber vermis (lobule VII) and the paramedian lobule to the cerebellar nuclear complex in the rat. A. Schematic diagram of the posterior surface of the cerebellum and subdivision of the tuber vermis and paramedian lobule, based on the topography of their projections. B. Schematic sagittal diagrams of the nuclear complex showing the terminal fields which receive projections from the individual subdivisions of the tuber vermis and paramedian lobule. AIN = anterior interposed nucleus cm = caudomedial sub-division of the medial nucleus Cop. pyr = copula pyramidis DLH = dorsolateral hump DLP = dorsolateral protuberance of the medial nucleus LN = lateral cerebellar nucleus LVN = lateral vestibular nucleus m = medial nucleus PIN = posterior interposed nucleus Pml = paramedian lobule. Umetani (1989).
GAD-immunoreactive boutons disappear from the contralateral PO, the rostral MAO and the lateral half of the ventral fold of the DAO of the rat after chronic lesions of the cerebellar nuclei or the superior cerebellar peduncle in the rat. The dorsal fold of the DAO is depleted of GAD-positive boutons after lesions extending into the lateral vestibular nucleus (Fredette and Mugnaini, 1991). Additional destruction of the vestibular nuclei results in the disappearance of GAD from the group beta but not from the medial half of the ventral fold of the DAO and the caudal MAO (Nelson and Mugnaini,... [Pg.234]

Fig. 164. The nucleo-olivary projection in the rat. Data from Ruigrok and Voogd (1990). Upper and lower block diagrams represent the cerebellar and vestibular nuclei, and the subdivisions of the inferior olive respectively. According to Ruigrok and Voogd (1990) the cerebellar nuclei and their olivary target nuclei can be considered as a continuum, stretching from the rostral medial cerebellar nucleus, projecting to caudal MAO, to the lateral vestibular nucleus, projecting to the dorsal fold of the DAO. DL = dorsolateral protuberance of the medial cerebellar nucleus DMC = dorsomedial cell column IntA = anterior interposed nucleus IntDL = dorsolateral hump IntP = posterior interposed nucleus lOD = dorsal accessory olive lODM = dorsomedial cell column lOM = medial accessory olive lOP = principal olive Lat = lateral cerebellar nucleus LVe = lateral vestibular nucleus Med = medial cerebellar nucleus VL = ventrolateral outgrowth. Fig. 164. The nucleo-olivary projection in the rat. Data from Ruigrok and Voogd (1990). Upper and lower block diagrams represent the cerebellar and vestibular nuclei, and the subdivisions of the inferior olive respectively. According to Ruigrok and Voogd (1990) the cerebellar nuclei and their olivary target nuclei can be considered as a continuum, stretching from the rostral medial cerebellar nucleus, projecting to caudal MAO, to the lateral vestibular nucleus, projecting to the dorsal fold of the DAO. DL = dorsolateral protuberance of the medial cerebellar nucleus DMC = dorsomedial cell column IntA = anterior interposed nucleus IntDL = dorsolateral hump IntP = posterior interposed nucleus lOD = dorsal accessory olive lODM = dorsomedial cell column lOM = medial accessory olive lOP = principal olive Lat = lateral cerebellar nucleus LVe = lateral vestibular nucleus Med = medial cerebellar nucleus VL = ventrolateral outgrowth.
Fig. 203. Mossy fiber projections to the flocculus and the adjacent paraflocculus in the cat. Based on antegrade tracing experiments with tritiated leucine. Notice the lack of basal pontine and reticulopontine projections to the flocculus and their presence in the medial extension (ME) and the caudal lobules (PFLVc) of the ventral paraflocculus in the upper three diagrams. Vestibulo-cerebellar fibers in lower two diagrams terminate both in the flocculus and the ME. A, AP = stereotactic planes DV = descending vestibular nucleus FL = flocculus LV = lateral vestibular nucleus ME = medial extension of the ventral paraflocculus MV = medial vestibular nucleus NP = nuclei pontis = NRTP = nucleus reticularis tegmenti pontis PFLD = dorsal paraflocculus PFLV(c) = (caudal folium of the) ventral paraflocculus SV = superior vestibular nucleus. Gerrits and Voogd (1989). Fig. 203. Mossy fiber projections to the flocculus and the adjacent paraflocculus in the cat. Based on antegrade tracing experiments with tritiated leucine. Notice the lack of basal pontine and reticulopontine projections to the flocculus and their presence in the medial extension (ME) and the caudal lobules (PFLVc) of the ventral paraflocculus in the upper three diagrams. Vestibulo-cerebellar fibers in lower two diagrams terminate both in the flocculus and the ME. A, AP = stereotactic planes DV = descending vestibular nucleus FL = flocculus LV = lateral vestibular nucleus ME = medial extension of the ventral paraflocculus MV = medial vestibular nucleus NP = nuclei pontis = NRTP = nucleus reticularis tegmenti pontis PFLD = dorsal paraflocculus PFLV(c) = (caudal folium of the) ventral paraflocculus SV = superior vestibular nucleus. Gerrits and Voogd (1989).
The collateral projections from the lateral reticular nucleus terminate in the same regions of the cerebellar nuclei as the direct spinocerebellar projections. According to Matsushita and Ikeda (1976) they are absent from the lateral cerebellar nucleus in the cat, but according to Dietrichs (1983b) certain parts of the lateral nucleus receive lateral reticular afferents. A weak projection of the lateral reticular nucleus to the lateral vestibular nucleus that was described by Dietrichs and Walberg (1979a) in the cat, recently was confirmed in the rat (Ruigrok et al., 1995). [Pg.302]

Does the Zebrin pattern result from the interdigitation of two sets of Purkinje cells that differ in their biochemical properties and in their afferent and efferent connections The truth, probably, is less simple. Purkinje cells of the A and B zones of rat cerebellum, that project to the lateral vestibular nucleus, are uniformly Zebrin-negative and are delimited by Zebrin-positive bands and satellite bands (Fig. 143). Other zones, that can be defined by their corticonuclear and olivocerebellar connections, such as the lateral extension of the A zone of Buisseret-Delmas (1988a), include both Zebrin-positive and Zebrin-negative regions (Fig. 144). Morever, uniformly Zebrin-positive lobules, like lobule VII, the nodulus, the flocculus and the paraflocculus, contain a complex zonal substructure (Sections 6.1.4., 6.1.5. and 6.3.3.3.). [Pg.308]

Andersson G, Oscarsson O (1978a) Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Exp. Brain Res., 32, 549-564. [Pg.312]

Baurle J, Grusser-Cornehls U (1994) Calbindin D-28k in the lateral vestibular nucleus of mutant mice as a tool to reveal Purldnje cell plasticity. Neurosci. Lett., 167, 85-88. [Pg.315]

Houser CR, Barber RP, Vaughn JE (1984) Immunocytochemical localization of glutamic acid decarboxylase in the dorsal lateral vestibular nucleus evidence for an intrinsic and extrinsic GABAergic innervation. Neurosci. Lett., 47, 213-220. [Pg.335]

Ruigrok TJH, Celia F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris Leucoagglutinin. Eur. J. Neurosci. 7, 1410-1413. [Pg.357]

McCandless, D.W. (1982). Energy metabolism in the lateral vestibular nucleus in pryithiamin-induced thiamin deficiency. Ann. N.Y. Acad. Sci. 378 355-364. [Pg.299]

McCandless, D.W. and Schwartzenburg, F.C., Jr. (1981). The effect of thiamine deficiency on energy metabolism in cells of the lateral vestibular nucleus. Res. Comm. Psychol. Psychiat. Behav. 6 183-190. [Pg.299]

Kudo Y, Ishida R (1989) Effects of afloqualone on vestibular nystagmus and the lateral vestibular nucleus. Jpn J Pharmacol 50 515-519... [Pg.672]

Sotelo, C. and Palay, S.L. (1971). Altered axons and axon terminals in the lateral vestibular nucleus of the rat possible example of axonal remodeling. Lab. Invest., 25, 653-671 Tanis, A.L. (1955). Lead poisoning in children. Am. ]. Dis. Child., 69, 325-331 Thatcher, R.W., Lester, M.L., McAlaster, R. and Horst, R. (1982). Effects of low levels of cadmium and lead on cognitive functioning in children. Arch. Environ. Health, 37, 159-166 Thatcher, R.W., McAlaster, R. and Lester, M.L. (1984). Evoked potentials related to hair cadmium and lead in children. Ann. N.Y. Acad. Sci., 425, 384-390 US Centers for Disease Control. (1985). Preventing lead poisoning in young children. Atlanta, GA US Department of Health and Human Services, Centers for Disease Control no. 99-2230. [Pg.114]


See other pages where Lateral vestibular nucleus is mentioned: [Pg.154]    [Pg.494]    [Pg.85]    [Pg.210]    [Pg.143]    [Pg.150]    [Pg.153]    [Pg.157]    [Pg.164]    [Pg.165]    [Pg.173]    [Pg.177]    [Pg.183]    [Pg.185]    [Pg.201]    [Pg.204]    [Pg.211]    [Pg.289]    [Pg.304]    [Pg.259]    [Pg.294]   


SEARCH



© 2024 chempedia.info