Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser flash photolysis, LFP

Further studies were carried out with halocarbene amides 34 and 357 Although again no direct spectroscopic signatures for specifically solvated carbenes were found, compelling evidence for such solvation was obtained with a combination of laser flash photolysis (LFP) with UV-VIS detection via pyridine ylides, TRIR spectroscopy, density functional theory (DFT) calculations, and kinetic simulations. Carbenes 34 and 35 were generated by photolysis of indan-based precursors (Scheme 4.7) and were directly observed by TRIR spectroscopy in Freon-113 at 1635 and 1650 cm , respectively. The addition of small amounts of dioxane or THF significantly retarded the rate of biomolecular reaction with both pyridine and TME in Freon-113. Also, the addition of dioxane increased the observed lifetime of carbene 34 in Freon-113. These are both unprecedented observations. [Pg.200]

Much attention has been devoted to the development of methods to generate quinone methides photochemically,1,19-20 since this provides temporal and spatial control over their formation (and subsequent reaction). In addition, the ability to photogenerate quinone methides enables their study using time-resolved absorption techniques (such as nanosecond laser flash photolysis (LFP)).21 This chapter covers the most important methods for the photogeneration of ortho-, meta-, and para-quinone methides. In addition, spectral and reactivity data are discussed for quinone methides that are characterized by LFP. [Pg.4]

The formation of 7a was also observed in solution using laser flash photolysis (LFP) with nanosecond time resolution.25,26 In Freon-113 7a shows an absorption maximum at 470 nm, and a life-time of longer than 20 xs.25 The rate of 2.9 x 109 M 1 s-1 for this reaction is almost the diffusion limit and implies a very small or absent barrier. In aqueous solution the rate constant for the reaction of la with 3Oj is 3.5 x 109 M-1 s-1, and the absorption maximum of 7a was determined as 460 nm.26 This clearly demonstrates that the oxidation of carbene la in solid argon and in solution follows the same reaction pathway. [Pg.176]

Laser flash photolysis (LFP) of quinone diazide 2d in Freon-113 at room temperature produces carbene Id, which could be monitored indirectly by addition of trapping reagents.25 At 2.0 xs the lifetime of Id is slightly longer than that of la (1.65 xs), otherwise the reactivities of these carbenes are very similar. The Id —> 11 rearrangement is not observed in the LFP experiments. All trapping products with a variety of reagents (O2, acetonitrile, pyridine etc.) are derived from carbene Id. [Pg.183]

Lanthanide ion catalysts, alcoholysis with, see Transition metal ion and Ln3+ catalysts, alcoholysis Laser flash photolysis (LFP), 170, 175-178 cyclodextrins (CD), binding dynamics of guests binding to, 215-216 DNA, binding dynamics of guests binding to, 193-194... [Pg.366]

Another transient aminoxyl radical has been generated , and employed in H-abstraction reactivity determinations" . Precursor 1-hydroxybenzotriazole (HBT, Table 2) has been oxidized by cyclic voltammetry (CV) to the corresponding >N—O species, dubbed BTNO (Scheme 9). A redox potential comparable to that of the HPI —PINO oxidation, i.e. E° 1.08 V/NHE, has been obtained in 0.01 M sodium acetate buffered solution at pH 4.7, containing 4% MeCN". Oxidation of HBT by either Pb(OAc)4 in AcOH, or cerium(IV) ammonium nitrate (CAN E° 1.35 V/NHE) in MeCN, has been monitored by spectrophotometry , providing a broad UV-Vis absorption band with A-max at 474 nm and e = 1840 M cm. As in the case of PINO from HPI, the absorption spectrum of aminoxyl radical BTNO is not stable, but decays faster (half-life of 110 s at [HBT] = 0.5 mM) than that of PINO . An EPR spectrum consistent with the structure of BTNO was obtained from equimolar amounts of CAN and HBT in MeCN solution . Finally, laser flash photolysis (LFP) of an Ar-saturated MeCN solution of dicumyl peroxide and HBT at 355 nm gave rise to a species whose absorption spectrum, recorded 1.4 ms after the laser pulse, had the same absorption maximum (ca 474 nm) of the spectrum recorded by conventional spectrophotometry (Scheme 9)59- 54... [Pg.718]

Laser flash photolysis (LFP) studies have been carried out on the generation of N,C-diaryl nitrile imines from sydnones and from tetrazoles in solution at 77 K. They were found to have hfetimes of milliseconds and were quenched by dimethyl acetylenedicarboxylate (DMAD) (A q=5-9 x 10 M s ) and by carboxyhc acids (feq= lO -lO s ) (13). The strong dependence of v ax on the nature of the aromatic substituents in N,C-diaryl nitrile imines was interpreted by a hnear free energy relationship as due to intramolecular charge transfer (14). [Pg.477]

Recognizing this, Richard and Jencks, proposed using azide ion as a clock for obtaining absolute reactivities of less stable cations. The basic assumption is that azide ion is reacting at the diffusion limit with the cation. Taking 5 x 10 M s as the second-order rate constant for this reaction, measurement of the selectivity fcaz Nu for the competition between azide ion and a second nucleophile then provides the absolute rate constant since feaz is known. The clock approach has now been applied to a number of cations, with measurements of selectivities by both competition kinetics and common ion inhibition. Other nucleophiles have been employed as the clock. The laser flash photolysis (LFP) experiments to be discussed later have verified the azide clock assumption. Cations with lifetimes in water less than about 100 ps do react with azide ion with a rate constant in the range 5-10x10 M- s-, " which means that rate constants obtained by a clock method can be viewed with reasonable confidence. [Pg.18]

Nitrenium ions (or imidonium ions in the contemporaneous nomenclature) were described in a 1964 review of nitrene chemistry by Abramovitch and Davis. A later review by Lansbury in 1970 focused primarily on vinylidine nitrenium ions. Gassmann s ° 1970 review was particularly influential in that it described the application of detailed mechanistic methods to the question of the formation of nitrenium ions as discrete intermediates. McClelland" reviewed kinetic and lifetime properties of nitrenium ions, with a particular emphasis on those studied by laser flash photolysis (LFP). The role of singlet and triplet states in the reactions of nitrenium ions was reviewed in 1999. Photochemical routes to nitrenium ions were discussed in a 2000 review. Finally, a noteworthy review of arylnitrenium ion chemistry by Novak and Rajagopal " has recently appeared. [Pg.597]

Whether laser flash photolysis (LFP) is used to detect RIs before they react, or matrix isolation at very low temperatures is employed to slow down or quench these reactions, spectroscopic characterization of RIs is frequently limited to infrared (IR) and/or ultraviolet-visible (UV-vis) spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy, which is generally the most useful spectroscopic technique for unequivocally assigning structures to stable organic molecules, is inapplicable to many types of RI. [Pg.964]

There are a number of non-electrochemical techniques that have proven invaluable in combination with electrochemical results in understanding the chemistry and the kinetics. Laser flash photolysis (LFP) is a well-established technique for the study of the transient spectroscopy and kinetics of reactive intermediates. The technique is valuable for the studying of the kinetics of the reactions of radical anions, particularly those that undergo rapid stepwise dissociative processes. The kinetics of fragmentation of radical anions can be determined using this method if (i) the radical anion of interest can be formed in a process initiated by a laser pulse, (ii) it has a characteristic absorption spectrum with a suitable extinction coefficient, and (iii) the rate of decay of the absorption of the radical anion falls within the kinetic window of the LFP technique typically this is in the order of 1 x 10" s to 1 X 10 s . [Pg.102]


See other pages where Laser flash photolysis, LFP is mentioned: [Pg.3]    [Pg.17]    [Pg.54]    [Pg.160]    [Pg.171]    [Pg.208]    [Pg.212]    [Pg.239]    [Pg.38]    [Pg.168]    [Pg.71]    [Pg.120]    [Pg.89]    [Pg.645]    [Pg.285]    [Pg.392]    [Pg.756]    [Pg.848]    [Pg.227]   
See also in sourсe #XX -- [ Pg.160 , Pg.161 , Pg.171 , Pg.175 , Pg.176 , Pg.183 , Pg.191 , Pg.192 , Pg.198 ]




SEARCH



Flash photolysis

Laser flash photolysis

© 2024 chempedia.info