Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanide-catalyzed addition

Some of the most active catalysts for the hydroamination of alkynes are based on lanthanides and actinides. The turnover frequencies for the additions are higher than those for lanthanide-catalyzed additions to alkenes by one or two orders of magnitude. Thus, intermolecular addition occurs with acceptable rates. Examples of both intermolecular and intramolecular reactions have been reported (Equations 16.87 and 16.88). Tandem processes initiated by hydroamination have also been reported. As shown in Equation 16.89, intramolecular hydroamination of an alk5me, followed by cyclization with the remaining olefin, generates a pyrrolizidine skeleton. Hydroaminations of aminoalkynes have also been conducted with the metallocenes of the actinides uranium and thorium. - These hydroaminations catalyzed by lanthanide and actinide complexes occur by insertion of the alkyne into a metal-amido intermediate. [Pg.711]

Jenner investigated the kinetic pressure effect on some specific Michael and Henry reactions and found that the observed activation volumes of the Michael reaction between nitromethane and methyl vinyl ketone are largely dependent on the magnitude of the electrostriction effect, which is highest in the lanthanide-catalyzed reaction and lowest in the base-catalyzed version. In the latter case, the reverse reaction is insensitive to pressure.52 Recently, Kobayashi and co-workers reported a highly efficient Lewis-acid-catalyzed asymmetric Michael addition in water.53 A variety of unsaturated carbonyl derivatives gave selective Michael additions with a-nitrocycloalkanones in water, at room temperature without any added catalyst or in a very dilute aqueous solution of potassium carbonate (Eq. 10.24).54... [Pg.323]

Lanthanide(III) isopropoxides show higher activities in MPV reductions than Al(OiPr)3, enabling their use in truly catalytic quantities (see Table 20.7 compare entry 2 with entries 3 to 6). Aluminum-catalyzed MPVO reactions can be enhanced by the use of TFA as additive (Table 20.7, entry 11) [87, 88], by utilizing bidentate ligands (Table 20.7, entry 14) [89] or by using binuclear catalysts (Table 20.7, entries 15 and 16) [8, 9]. With bidentate ligands, the aluminum catalyst does not form large clusters as it does in aluminum(III) isopropoxide. This increase in availability per aluminum ion increases the catalytic activity. Lanthanide-catalyzed reactions have been improved by the in-situ preparation of the catalyst the metal is treated with iodide in 2-propanol as the solvent (Table 20.7, entries 17-20) [90]. Lanthanide triflates have also been reported to possess excellent catalytic properties [91]. [Pg.601]

Lanthanide salts have been found to catalyze addition of oc-nitroesters, even in aqueous solution.105 106... [Pg.45]

Widenhoefer has developed methods for Pd-catalyzed addition of 1,3-dicarbonyl nucleophiles to alkenes [ 171-173]. Most of these reactions employ stoichiometric copper as the oxidant however, Yang and coworkers recently reported a modified procedure that employs cocatalytic lanthanide Lewis acids to achieve direct dioxygen-coupled turnover (Eq. 39) [174], The Lewis acid is thought to activate the carbon nucleophile, P-keto amide, toward attack on the tethered alkene. [Pg.101]

Isobutyl complexes, with Zr(IV) and Hf(IV), 4, 903—904 Isocyanates, lanthanide-catalyzed polymerization, 4, 152 Isocyanides bis-silylation, 10, 747 chalcogen-chalcogen additions, 10, 752 with chromium... [Pg.131]

Consistently good enantioselectivity in the catalyzed addition of MOjSiCN to aldehydes is observed with 33 as chiral ligand, while fluctuating results are obtained in the formation of a-hydroxyphosphonate esters by an analogous addition using chiral lanthanide alkoxides. ... [Pg.83]

Lanthanide triflates and Sc(OTf)3 effectively catalyze conjugate addition of SEE, KSA, and ketene silyl thioacetals under mild conditions (0°C to room temperature, 1-10 mol% catalyst) (Scheme 10.86) [69, 238]. After an aqueous work-up these Lewis acids can be recovered almost quantitatively from the aqueous layer and can be re-used without reduction of fheir catalytic activity. Eu(fod)3 also is effective in not only aldol reactions but also Michael addition of KSA [239]. The Eu(fod)3-catalyzed addition of KSA is highly chemoselective for enones in the presence of ketones. [Pg.469]

Interesting chemoselectivity was observed in this addition reaction. HBF4-catalyzed addition reaction selectively proceeded toward an aldimine in the presence of an aldehyde (Scheme 3.2). In general, common Lewis acids except for some lanthanide triflates or transition metals activate aldehydes rather than aldimines preferentially. The high chemoselectivity was realized because the more basic nitrogen was activated more effectively by HBF4 than the carbonyl oxygen. [Pg.61]

Aldol Reactions Addition to Aldehydes and Imines. Since its discovery, the Mukaiyama aldol reaction. has attracted considerable attention and several improvements in reaction conditions have heen reported. Most useful catalysts for this reaction appear to he recently reported lanthanide triflates (eq 5), bis(cyclopentadienyl)titanium bis(trifluoromethanesulfonate), or Cp2Zr(OTf)2 THF. The metallocene salt also catalyzes additions to ketones (eq 6). This reaction can also be carried out under essentially neutral conditions by warming (70 °C) a stoichiometric mixture of the aldehyde and the KSA in acetonitrile (eq 7). When an optically active aldehyde is used, a slightly better stereochemical control is noticed under catalysis of zinc iodide. ... [Pg.377]

Scheme 12 Transition metal-catalyzed additions of trialkyl alanes to imines. (a) Lanthanide catalysis, (b) Addition to an A-formylimine... Scheme 12 Transition metal-catalyzed additions of trialkyl alanes to imines. (a) Lanthanide catalysis, (b) Addition to an A-formylimine...
There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

The 2-pyrones can behave as dienes or dienophiles depending on the nature of their reaction partners. 3-Carbomethoxy-2-pyrone (84) underwent inverse Diels-Alder reaction with several vinylethers under lanthanide shift reagent-catalysis [84] (Equation 3.28). The use of strong traditional Lewis acids was precluded because of the sensitivity of the cycloadducts toward decarboxylation. It is noteworthy that whereas Yb(OTf)j does not catalyze the cycloaddition of 84 with enolethers, the addition of (R)-BINOL generates a new active ytterbium catalyst which promotes the reactions with a moderate to good level of enantio selection [85]. [Pg.126]

The discussion of the activation of bonds containing a group 15 element is continued in chapter five. D.K. Wicht and D.S. Glueck discuss the addition of phosphines, R2P-H, phosphites, (R0)2P(=0)H, and phosphine oxides R2P(=0)H to unsaturated substrates. Although the addition of P-H bonds can be sometimes achieved directly, the transition metal-catalyzed reaction is usually faster and may proceed with a different stereochemistry. As in hydrosilylations, palladium and platinum complexes are frequently employed as catalyst precursors for P-H additions to unsaturated hydrocarbons, but (chiral) lanthanide complexes were used with great success for the (enantioselective) addition to heteropolar double bond systems, such as aldehydes and imines whereby pharmaceutically valuable a-hydroxy or a-amino phosphonates were obtained efficiently. [Pg.289]

The lanthanides are congeners of the Group IIIA metals scandium and yttrium, with the +3 oxidation state usually being the most stable. These ions are strong oxyphilic Lewis acids and catalyze carbonyl addition reactions by a number of nucleophiles. Recent years have seen the development of synthetic procedures involving lanthanide metals, especially cerium.195 In the synthetic context, organocerium... [Pg.664]

Abstract Recent advances in the metal-catalyzed one-electron reduction reactions are described in this chapter. One-electron reduction induced by redox of early transition metals including titanium, vanadium, and lanthanide metals provides a variety of synthetic methods for carbon-carbon bond formation via radical species, as observed in the pinacol coupling, dehalogenation, and related radical-like reactions. The reversible catalytic cycle is achieved by a multi-component catalytic system in combination with a co-reductant and additives, which serve for the recycling, activation, and liberation of the real catalyst and the facilitation of the reaction steps. In the catalytic reductive transformations, the high stereoselectivity is attained by the design of the multi-component catalytic system. This article focuses mostly on the pinacol coupling reaction. [Pg.63]

As described in Section 9.1.2.2.3, several lanthanocene alkyls are known to be ethylene polymerization catalysts.221,226-229 Both (188) and (190) have been reported to catalyze the block copolymerization of ethylene with MMA (as well as with other polar monomers including MA, EA and lactones).229 The reaction is only successful if the olefin is polymerized first reversing the order of monomer addition, i.e., polymerizing MMA first, then adding ethylene only affords PMMA homopolymer. In order to keep the PE block soluble the Mn of the prepolymer is restricted to <12,000. Several other lanthanide complexes have also been reported to catalyze the preparation of PE-b-PMMA,474 76 as well as the copolymer of MMA with higher olefins such as 1-hexene.477... [Pg.27]

Addition of ketene silyl acetals to a,N-diarylnitrones, catalyzed by lanthanum trifloromethanesulfonate [lanthanide triflate, La(OTf)3], affords addition... [Pg.274]

Recently, another type of catalytic cycle for the hydrosilylation has been reported, which does not involve the oxidative addition of a hydrosilane to a low-valent metal. Instead, it involves bond metathesis step to release the hydrosilylation product from the catalyst (Scheme 2). In the cycle C, alkylmetal intermediate generated by hydrometallation of alkene undergoes the metathesis with hydrosilane to give the hydrosilylation product and to regenerate the metal hydride. This catalytic cycle is proposed for the reaction catalyzed by lanthanide or a group 3 metal.20 In the hydrosilylation with a trialkylsilane and a cationic palladium complex, the catalytic cycle involves silylmetallation of an alkene and metathesis between the resulting /3-silylalkyl intermediate and hydrosilane (cycle D).21... [Pg.816]

In the presence of a catalytic amount of chiral lanthanide triflate 63, the reaction of 3-acyl-l,3-oxazolidin-2-ones with cyclopentadiene produces Diels-Alder adducts in high yields and high ee. The chiral lanthanide triflate 63 can be prepared from ytterbium triflate, (R)-( I )-binaphthol, and a tertiary amine. Both enantiomers of the cycloaddition product can be prepared via this chiral lanthanide (III) complex-catalyzed reaction using the same chiral source [(R)-(+)-binaphthol] and an appropriately selected achiral ligand. This achiral ligand serves as an additive to stabilize the catalyst in the sense of preventing the catalyst from aging. Asymmetric catalytic aza Diels-Alder reactions can also be carried out successfully under these conditions (Scheme 5-21).19... [Pg.282]

As mentioned in the introduction, early transition metal complexes are also able to catalyze hydroboration reactions. Reported examples include mainly metallocene complexes of lanthanide, titanium and niobium metals [8, 15, 29]. Unlike the Wilkinson catalysts, these early transition metal catalysts have been reported to give exclusively anti-Markonikov products. The unique feature in giving exclusively anti-Markonikov products has been attributed to the different reaction mechanism associated with these catalysts. The hydroboration reactions catalyzed by these early transition metal complexes are believed to proceed with a o-bond metathesis mechanism (Figure 2). In contrast to the associative and dissociative mechanisms discussed for the Wilkinson catalysts in which HBR2 is oxidatively added to the metal center, the reaction mechanism associated with the early transition metal complexes involves a a-bond metathesis step between the coordinated olefin ligand and the incoming borane (Figure 2). The preference for a o-bond metathesis instead of an oxidative addition can be traced to the difficulty of further oxidation at the metal center because early transition metals have fewer d electrons. [Pg.204]

A copper-catalyzed reaction using a chiral diphosphine hgand, DuPHOS, with an added lanthanide salt, provides good levels of enantioselectivity (67-91% ee) in additions of the simple allylboronate 31 to both aromatic and aliphatic ketones that present a large difference of steric bulk on the two sides of the carbonyl group. One such example is shown in Eq. 81. On the basis of B NMR experiments and on the lack of diastereoselectivity in crotylation reactions, the... [Pg.45]

Alumina, alkaline-earth oxides, mixed oxides (spinels), rare-earth oxides, and lanthanide ores are known additives capable of sorbing S-impurities. The properties of these materials can be manipulated to produce catalysts capable of reducing up to -80% S-emissions and meet the refiner needs. It is, however, unlikely that these systems will be capable of satisfying the more stringent environmental S-emission standards expected in the future. Details of the reaction mechanism by which additives and promoters catalyze the oxidative sorption of S-impurities and details of catalyst deactivation have not yet been proposed. This work could provide useful information to help design more efficient S-transfer catalysts. The catalytic control of S-emissions from FCC units has been described in detail in two papers appearing in this volume (46,47) and in the references given (59). [Pg.12]


See other pages where Lanthanide-catalyzed addition is mentioned: [Pg.44]    [Pg.44]    [Pg.25]    [Pg.33]    [Pg.95]    [Pg.87]    [Pg.138]    [Pg.694]    [Pg.694]    [Pg.397]    [Pg.2039]    [Pg.17]    [Pg.694]    [Pg.1016]    [Pg.620]    [Pg.1106]    [Pg.223]    [Pg.268]    [Pg.290]    [Pg.934]    [Pg.62]    [Pg.775]    [Pg.86]    [Pg.238]    [Pg.250]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Addition catalyzed

Lanthanide additives

Lanthanides addition

© 2024 chempedia.info