Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Langmuir adsorbate

It is concluded that is proportional to the slope of the semilogarlthmic isotherm plot. According to fig. 1.12b. for a Langmuir adsorbate it passes through a maximum at 0= 0.5 this is expected because then the mixing entropy (first term on the r.h.s. of [1.5.3]) is a maximum. No fluctuations are possible for 0 = 0 and 0 = 1. [Pg.78]

The JVl accounts for the Indistinguishability of the adsorbed atoms. In this case there is no permutation factor - N) N as in a Langmuir adsorbate. [Pg.83]

Figure 7.1. Energetic scheme of a Langmuir adsorbate. AH adsorption sites can only take one molecule. All admolecules are isolated from each other so that no interactions between them have to be taken into account. Figure 7.1. Energetic scheme of a Langmuir adsorbate. AH adsorption sites can only take one molecule. All admolecules are isolated from each other so that no interactions between them have to be taken into account.
We finally want to draw reader s attention to the energetic situation of the classical Langmuir adsorbate described by Eq. (7.1). [Pg.367]

Figure 7.4. Specific enthalpy of desorption of a Langmuir adsorbate (Ahjes) and a real adsorbate (Ahjes,.). The integral enthalpies of desorption AHalso have... Figure 7.4. Specific enthalpy of desorption of a Langmuir adsorbate (Ahjes) and a real adsorbate (Ahjes,.). The integral enthalpies of desorption AHalso have...
Figure 7.8. Energetic scheme of a Langmuir adsorbate with admolecular interactions. At low coverages the adsorption energy (q = 2.5 r) is much larger than the interaction energy of the admolecules (q S r) with (r) being the heat of evaporation of the sorptive medium. Figure 7.8. Energetic scheme of a Langmuir adsorbate with admolecular interactions. At low coverages the adsorption energy (q = 2.5 r) is much larger than the interaction energy of the admolecules (q S r) with (r) being the heat of evaporation of the sorptive medium.
Langmuir adsorption isotherm A theoretical equation, derived from the kinetic theory of gases, which relates the amount of gas adsorbed at a plane solid surface to the pressure of gas in equilibrium with the surface. In the derivation it is assumed that the adsorption is restricted to a monolayer at the surface, which is considered to be energetically uniform. It is also assumed that there is no interaction between the adsorbed species. The equation shows that at a gas pressure, p, the fraction, 0, of the surface covered by the adsorbate is given by ... [Pg.234]

Although still used the Langmuir equation is only of limited value since in practice surfaces are energetic inhomogeneous and interactions between adsorbed species often occur. [Pg.234]

The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

Assume that an aqueous solute adsorbs at the mercury-water interface according to the Langmuir equation x/xm = bc/( + be), where Xm is the maximum possible amount and x/x = 0.5 at C = 0.3Af. Neglecting activity coefficient effects, estimate the value of the mercury-solution interfacial tension when C is Q.IM. The limiting molecular area of the solute is 20 A per molecule. The temperature is 25°C. [Pg.157]

Assume that a salt, MX (1 1 type), adsorbs at the mercury-water interface according to the Langmuir equation ... [Pg.217]

Various functional forms for / have been proposed either as a result of empirical observation or in terms of specific models. A particularly important example of the latter is that known as the Langmuir adsorption equation [2]. By analogy with the derivation for gas adsorption (see Section XVII-3), the Langmuir model assumes the surface to consist of adsorption sites, each having an area a. All adsorbed species interact only with a site and not with each other, and adsorption is thus limited to a monolayer. Related lattice models reduce to the Langmuir model under these assumptions [3,4]. In the case of adsorption from solution, however, it seems more plausible to consider an alternative phrasing of the model. Adsorption is still limited to a monolayer, but this layer is now regarded as an ideal two-dimensional solution of equal-size solute and solvent molecules of area a. Thus lateral interactions, absent in the site picture, cancel out in the ideal solution however, in the first version is a properly of the solid lattice, while in the second it is a properly of the adsorbed species. Both models attribute differences in adsorption behavior entirely to differences in adsorbate-solid interactions. Both present adsorption as a competition between solute and solvent. [Pg.391]

Fuerstenau and Healy [100] and to Gaudin and Fuerstenau [101] that some type of near phase transition can occur in the adsorbed film of surfactant. They proposed, in fact, that surface micelle formation set in, reminiscent of Langmuir s explanation of intermediate type film on liquid substrates (Section IV-6). [Pg.479]

The case of a vapor adsorbing on its own liquid surface should certainly correspond to mobile adsorption. Here, 6 is unity and P = the vapor pressure. The energy of adsorption is now that of condensation Qu, and it will be convenient to define the Langmuir constant for this case as thus, from Eq. xvn-39. [Pg.611]

This difference looks large enough to be diagnostic of the state of the adsorbed film. However, to be consistent with the kinetic derivation of the Langmuir equation, it was necessary to suppose that the site acted as a potential box and, furthermore, that a weak adsorption bond of ifi corresponding to 1 /tq was present. With these provisions we obtain... [Pg.613]

A variety of experimental data has been found to fit the Langmuir equation reasonably well. Data are generally plotted according to the linear form, Eq. XVn-9, to obtain the constants b and n from the best fitting straight line. The specific surface area, E, can then be obtained from Eq. XVII-10. A widely used practice is to take to be the molecular area of the adsorbate, estimated from liquid or solid adsorbate densities. On the other hand, the Langmuir model is cast around the concept of adsorption sites, whose spacing one would suppose to be characteristic of the adsorbent. See Section XVII-5B for an additional discussion of the problem. [Pg.615]

The basic assumption is that the Langmuir equation applies to each layer, with the added postulate that for the first layer the heat of adsorption Q may have some special value, whereas for all succeeding layers, it is equal to Qu, the heat of condensation of the liquid adsorbate. A furfter assumption is that evaporation and condensation can occur only from or on exposed surfaces. As illustrated in Fig. XVII-9, the picture is one of portions of uncovered surface 5o, of surface covered by a single layer 5, by a double-layer 52. and so on.f The condition for equilibrium is taken to be that the amount of each type of surface reaches a steady-state value with respect to the next-deeper one. Thus for 5o... [Pg.619]

Gas A, by itself, adsorbs to a of 0.02 at P = 200 mm Hg, and gas B, by itself, adsorbs tod = 0.02 at P = 20 mm Hg Tisll K in both cases, (a) Calculate the difference between (2a and (2b> the two heats of adsorption. Explain briefly any assumptions or approximations made, ib) Calculate the value for 6 when the solid, at 77 K, is equilibrated with a mixture of A and B such that the final pressures are 200 mm Hg each, (c) Explain whether the answer in b would be raised, lowered, or affected in an unpredictable way if all of the preceding data were the same but the surface was known to be heterogeneous. The local isotherm function can still be assumed to be the Langmuir equation. [Pg.672]

Since in chemisorption systems it is reasonable to suppose that the strong adsorbent-adsorbate interaction is associated with specific adsorption sites, a situation that may arise is that the adsorbate molecule occupies or blocks the occupancy of a second adjacent site. This means that each molecule effectively requires two adjacent sites. An analysis [106] suggests that in terms of the kinetic derivation of the Langmuir equation, the rate of adsorption should now be... [Pg.701]

Ref. 205). The two mechanisms may sometimes be distinguished on the basis of the expected rate law (see Section XVni-8) one or the other may be ruled out if unreasonable adsorption entropies are implied (see Ref. 206). Molecular beam studies, which can determine the residence time of an adsorbed species, have permitted an experimental decision as to which type of mechanism applies (Langmuir-Hinshelwood in the case of CO + O2 on Pt(lll)—note Problem XVIII-26) [207,208]. [Pg.722]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

Rate laws have also been observed that correspond to there being two kinds of surface, one adsorbing reactant A and the other reactant B and with the rate proportional to 5a x 5b- For traditional discussions of Langmuir-Hinshelwood rate laws, see Refs. 240-242. Many catalytic systems involve a series of intermediates, and the simplifying assumption of steady-state equilibrium is usually made. See Boudart and co-workers [243-245] for a contemporary discussion of such complexities. [Pg.728]

L exposure would produce 1 ML of adsorbates if the sticking coefficient were unity. Note that a quantitative calculation of the exposure per surface atom depends on the molecular weight of the gas molecules and on the actual density of surface atoms, but the approximations inlierent in the definition of tire Langmuir are often inconsequential. [Pg.294]

Another limitation of tire Langmuir model is that it does not account for multilayer adsorption. The Braunauer, Ennnett and Teller (BET) model is a refinement of Langmuir adsorption in which multiple layers of adsorbates are allowed [29, 31]. In the BET model, the particles in each layer act as the adsorption sites for the subsequent layers. There are many refinements to this approach, in which parameters such as sticking coefficient, activation energy, etc, are considered to be different for each layer. [Pg.298]

The desire to understand catalytic chemistry was one of the motivating forces underlying the development of surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each other to fonn volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir-Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to fonn the products. If one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the Eley-Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8. [Pg.302]


See other pages where Langmuir adsorbate is mentioned: [Pg.78]    [Pg.83]    [Pg.184]    [Pg.365]    [Pg.78]    [Pg.83]    [Pg.184]    [Pg.365]    [Pg.234]    [Pg.2]    [Pg.209]    [Pg.297]    [Pg.399]    [Pg.406]    [Pg.408]    [Pg.445]    [Pg.611]    [Pg.613]    [Pg.614]    [Pg.652]    [Pg.686]    [Pg.705]    [Pg.724]    [Pg.729]    [Pg.736]    [Pg.741]    [Pg.296]    [Pg.297]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Adsorbed Langmuir

Adsorbed Langmuir

Adsorbed Langmuir isotherm

© 2024 chempedia.info