Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laminar turbulent boundary layer

The average heat transfer over the entire laminar-turbulent boundary layer is... [Pg.243]

FIGURE 4.24 Laminar and turbulent boundary layers and temperature distribution inside the boundary layer. [Pg.105]

Comparison of the velocity profiles for laminar and turbulent boundary layers. [Pg.10]

Equation 11.12 does not fit velocity profiles measured in a turbulent boundary layer and an alternative approach must be used. In the simplified treatment of the flow conditions within the turbulent boundary layer the existence of the buffer layer, shown in Figure 11.1, is neglected and it is assumed that the boundary layer consists of a laminar sub-layer, in which momentum transfer is by molecular motion alone, outside which there is a turbulent region in which transfer is effected entirely by eddy motion (Figure 11.7). The approach is based on the assumption that the shear stress at a plane surface can be calculated from the simple power law developed by Blasius, already referred to in Chapter 3. [Pg.675]

Putting the constant equal to zero, implies that <5 = 0 when x = 0, that is that the turbulent boundary layer extends to the leading edge of the surface. An error is introduced by this assumption, but it is found to be small except where the surface is only slightly longer than the critical distance xc for the laminar-turbulent transition. [Pg.677]

Equation (6-31) applies to the laminar sublayer region in a Newtonian fluid, which has been found to correspond to 0 < y+ < 5. The intermediate region, or buffer zone, between the laminar sublayer and the turbulent boundary layer can be represented by the empirical equation... [Pg.159]

The boundary layer thickness gradually increases until a critical point is reached at which there is a sudden thickening of the boundary layer this reflects the transition from a laminar boundary layer to a turbulent boundary layer. For both types, the flow outside the boundary layer is completely turbulent. In that part of the boundary layer near the leading edge of the plate the flow is laminar and consequently this is known as a... [Pg.65]

When the Reynolds number Rep reaches a value of about 300000, transition from a laminar to a turbulent boundary layer occurs and the point of separation moves towards the rear of the sphere as discussed above. As a result, the drag coefficient suddenly falls to a value of 0.10 and remains constant at this value at higher values of Rep. [Pg.291]

Figure 4 Hydrodynamic boundary layer development on the semi-infinite plate of Prandtl. <5D = laminar boundary layer, <5t = turbulent boundary layer, /vs = viscous turbulent sub-layer, <5ds = diffusive sub-layer (no eddies are present solute diffusion and mass transfer are controlled by molecular diffusion—the thickness is about 1/10 of <5vs)> B = point of laminar—turbulent transition. Source From Ref. 10. Figure 4 Hydrodynamic boundary layer development on the semi-infinite plate of Prandtl. <5D = laminar boundary layer, <5t = turbulent boundary layer, /vs = viscous turbulent sub-layer, <5ds = diffusive sub-layer (no eddies are present solute diffusion and mass transfer are controlled by molecular diffusion—the thickness is about 1/10 of <5vs)> B = point of laminar—turbulent transition. Source From Ref. 10.
In terms of hydrodynamics, the boundary layer thickness is measured from the solid surface (in the direction perpendicular to a particle s surface, for instance) to an arbitrarily chosen point, e.g., where the velocity is 90-99% of the stream velocity or the bulk flow ((590 or (599, respectively). Thus, the breadth of the boundary layer depends ad definitionem on the selection of the reference point and includes the laminar boundary layer as well as possibly a portion of a turbulent boundary layer. [Pg.136]

Apart from the nature of the bulk flow, the hydrodynamic scenario close to the surfaces of drug particles has to be considered. The nature of the hydrodynamic boundary layer generated at a particle s surface may be laminar or turbulent regardless of the bulk flow characteristics. The turbulent boundary layer is considered to be thicker than the laminar layer. Nevertheless, mass transfer rates are usually increased with turbulence due to the presence of the viscous turbulent sub-layer. This is the part of the (total) turbulent boundary layer that constitutes the main resistance to the overall mass transfer in the case of turbulence. The development of a viscous turbulent sub-layer reduces the overall resistance to mass transfer since this viscous sub-layer is much narrower than the (total) laminar boundary layer. Thus, mass transfer from turbulent boundary layers is greater than would be calculated according to the total boundary layer thickness. [Pg.136]

However, the molecules percolating up into the boundary layer from beneath the soil surface tend to become trapped in the stagnant laminar sublayer of the boundary layer. This sublayer is usually much thinner than the overall turbulent boundary layer, since it is dominated by viscous and surface tension forces, rather than by velocity. Phelan and Webb call this the chemical boundary layer and state categorically that there will generally be no chemical signature above this chemical boundary layer [1, p. 52],... [Pg.91]

Any consideration of mass transfer to or from drops must eventually refer to conditions in the layers (usually thin) of each phase adjacent to the interface. These boundary layers are envisioned as extending away from the interface to a location such that the velocity gradient normal to the general flow direction is substantially zero. In the model shown in Fig. 8, the continuous-phase equatorial boundary layer extends to infinity, but the drop-phase layer stops at the stagnation ring. At drop velocities well above the creeping flow region there is a thin laminar sublayer adjacent to the interface and a thicker turbulent boundary layer between this and the main body of the continuous phase. [Pg.78]

The transition to a turbulent boundary layer for a flat plate has been experimentally determined to occur at an Rcx value of between 3 x 10 and 6 x 10. For this example, the transition would occur between 15 and 30 cm after the start of the plate. Thus, the computations for a laminar boundary layer at 0.6 and 1 m are not realistic. However, the Blasius solution helps in the analysis of experimental data for a turbulent boundary layer, because it can tell us which parameters are likely to be important for this analysis, although the equations may take a different form. [Pg.84]

It is interesting to compare equations (6.32) and (6.33) with those for a fully developed laminar flow, equations (6.29) and (6.30). In Example 5.1, we showed that eddy diffusion coefficient in a turbulent boundary layer was linearly dependent on distance from the wall and on the wall shear velocity. If we replace the diffusion coefficient in equation (6.30) with an eddy diffusion coefficient that is proportional to hu, we get... [Pg.148]

During recent years experimental work continued actively upon the macroscopic aspects of thermal transfer. Much work has been done with fluidized beds. Jakob (D5, J2) made some progress in an attempt to correlate the thermal transport to fluidized beds with transfer to plane surfaces. This contribution supplements work by Bartholomew (B3) and Wamsley (Wl) upon fluidized beds and by Schuler (S10) upon transport in fixed-bed reactors. The influence of thermal convection upon laminar boundary layers and their transition to turbulent boundary layers was considered by Merk and Prins (M5). Monaghan (M7) made available a useful approach to the estimation of thermal transport associated with the supersonic flow of a compressible fluid. Monaghan s approximation of Crocco s more general solution (C9) of the momentum and thermal transport in laminar compressible boundary flow permits a rather satisfactory evaluation of the transport from supersonic compressible flow without the need for a detailed iterative solution of the boundary transport for each specific situation. None of these references bears directly on the problem of turbulence in thermal transport and for that reason they have not been treated in detail. [Pg.266]

This transition has profound effects in all fluid dynamics, and certainly so in aerodynamics. The velocity profile in (he boundary layer becomes fuller neat the surface on account of Ihe higher average kinetic energy of the layer created by turbulent energy exchange from layer lo layer. The effective viscosity is therefore larger in turbulent than laminar flow, ihe turbulent boundary layer thickens more rapidly downstream, the skin friction increases. [Pg.656]

Cylindrical Boundary Layer Laminar boundary layers on cylindrical surfaces, with flow parallel to the cylinder axis, are described by Glauert and Lighthill (Proc. R. Soc. [London], 230A, 188—203 [1955]), Jaffe and Okamura (Z. Angew. Math. Phys., 19,564-574 [1968]), and Stewartson (Q. Appl. Math., 13, 113—122 [1955]). For a turbulent boundary layer, the total drag may be estimated as... [Pg.41]

U. Grigull [14] pointed out that the correspondence h v0 5 means the predominance of the laminar boundary layer, whereas h v0 8 refers to the prevailing of the turbulent boundary layer. [Pg.26]

Eckert, E.R.G., Engineering Relations for Heat Transfer and Friction in High-Velocity Laminar and Turbulent Boundary Layer Flow over Surfaces with Constant Pressure and Temperature , Trans. ASME, Vol. 78, pp. 1273-1284, 1956. [Pg.156]

Eqs. (5.3), (5.16), and (5.20) are basically the form of the governing equations that will be used in the analysis of turbulent boundary layer flows. As mentioned before, attention will also be given to turbulent pipe flows. If the same coordinate system that was used in the discussion of laminar pipe flows is adopted, i.e., if the coordinate system shown in Fig. 5.2 is used, the equations governing turbulent pipe flow are, if assumptions similar to those used in dealing with boundary layer flows are adopted and if it is assumed that there is no swirl, as follows ... [Pg.231]

The conditions under which transition occurs depend on the geometrical situation being considered, on the Reynolds number, and on the level of unsteadiness in the flow well away from the surface over which the flow is occurring [2], [30]. For example, in the case of flow over a flat plate as shown in Figure 5.6, if the level of unsteadiness in the freestream flow ahead of the plate is very low, transition from laminar to turbulent boundary layer flow occurs approximately when ... [Pg.248]

The program assumes the flow is turbulent from the leading edge and that 62 = 0 when x = 0. The program can easily be modified to use a laminar boundary layer equation solution procedure to provide initial conditions for the turbulent boundary layer solution which would then be started at some assumed transition point. [Pg.274]

Solutions to the boundary layer equations are, today, generally obtained numerically [6],[7],[8],[9],[10],[11],[12]. In order to illustrate how this can be done, a discussion of how the simple numerical solution procedure for solving laminar boundary layer problems that was outlined in Chapter 5 can be modified to apply to turbulent boundary layer flows. For turbulent boundary layer flows, the equations given earlier in the present chapter can, because the fluid properties are assumed constant, be written as ... [Pg.281]

Consider laminar film condensation on a vertical plate when the vapor is flow ing parallel to the surface in a downward direction at velocity, V. Assume that a turbulent boundary layer is formed in the vapor along the outer surface of the laminar liquid film. Determine a criterion that will indicate when the effect of the shear stress at the outer edge of the condensed liquid film on the heat transfer rate is less than 59c. Assume that pv [Pg.602]


See other pages where Laminar turbulent boundary layer is mentioned: [Pg.84]    [Pg.84]    [Pg.92]    [Pg.32]    [Pg.10]    [Pg.12]    [Pg.61]    [Pg.156]    [Pg.345]    [Pg.346]    [Pg.346]    [Pg.66]    [Pg.136]    [Pg.137]    [Pg.144]    [Pg.216]    [Pg.220]    [Pg.656]    [Pg.41]    [Pg.88]    [Pg.113]    [Pg.282]   
See also in sourсe #XX -- [ Pg.675 ]




SEARCH



Boundary laminar

Boundary layer turbulence

Boundary layers turbulent layer

Boundary turbulent

Turbulence turbulent boundary layer

Turbulent boundary layer

Turbulent layer

© 2024 chempedia.info