Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactones ring-opening polymerization

Synthesis of Block and Graft Copolymers by Combination of (Di)lactones Ring Opening Polymerization with Other Living/Controlled Polymerization Processes... [Pg.21]

Ouhadi T, Hamitou R, Jerome R, Teyssie P (1976) Soluble bimetallic p-oxoalkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9 927-931... [Pg.209]

Mei, Y., Kumar, A., and Gross, R.A. (2002) Probing water-temperature relationships for lipase-catalyzed lactone ring-opening polymerizations. Macromolecules, 35.14, 5444-5448. [Pg.82]

Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. J. Am. Chem. Soc.,... [Pg.127]

Inspired by the fmding that HiC is active for polycondensation polymerizations, studies were performed to assess HiC activity for lactone ringopening polymerizations (Scheme 2). HiC-catalyzed ROP was carried out in either bulk or toluene. To determine the relationship between reaction temperature and enzyme activity for lactone ring-opening polymerizations, e-caprolactone (1) in bulk was taken as the model system. [Pg.266]

We conclude this section by citing some examples of ring-opening polymerizations. Table 5.9 lists several examples of ring-opening polymerizations. In addition to the reactions listed, we recall the polymerizations of lactones and lactams exemplified by equations in Table 5.3 and 5.4, respectively. [Pg.332]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

SCHEME 8.11 Ring-opening polymerization of (J-lactones to produce polyhydroxyalkanoates (PHAs). [Pg.234]

FIGURE 2 Polymers that can be derived firom L-serine. (a) Poly-(serine ester) was obtained by ring opening polymerization of N-protected serine-p-lactones (19). (b) Poly(serine imine) has appar-... [Pg.200]

Various cyclic esters have been subjected to hpase-catalyzed ring-opening polymerization. Lipase catalyzed the ring-opening polymerization of 4- to 17-membered non-substituted lactones.In 1993, it was first demonstrated that medium-size lactones, 8-valerolactone (8-VL, six-membered) and e-caprolactone (e-CL, seven-membered), were polymerized by lipases derived from Candida cylindracea, Burkholderia cepacia (lipase BC), Pseudomonas fluorescens (lipase PF), and porcine pancreas (PPL). °... [Pg.207]

Lipase catalysis is often used for enantioselective production of chiral compounds. Lipase induced the enantioselective ring-opening polymerization of racemic lactones. In the lipase-catalyzed polymerization of racemic (3-BL, the enantioselec-tivity was low an enantioselective polymerization of (3-BL occurred by using thermophilic lipase to give (/ )-enriched PHB with 20-37% enantiomeric excess (ee). ... [Pg.219]

Reactive polyesters were enzymatically synthesized. Lipase catalysis chemoselecfively induced the ring-opening polymerization of a lactone having exo-methylene group to produce a polyester having the reactive exo-methylene group in the main chain (Scheme 16). This is in contrast to the anionic... [Pg.224]

Polyester syntheses have been achieved by enzymatic ring-opening polymerization of lactide and lactones with various ring-sizes. Here, we focus not only on these cyclic esters but also other cyclic monomers for lipase-catalyzed ringopening polymerizations. Figure 8 summarizes cyclic monomers for providing polyesters via lipase catalysis. [Pg.248]

Lipase catalyzed the ring-opening polymerization of medium-size lactones, d-valerolactone (<5-VL, six-membered) and -caprolactone (c-CL, seven-mem-bered). Lipases CC, PF and PPL showed high catalytic activity for the polymerization of <5-VL [74,75]. The molecular weight of the polymer obtained in bulk at 60 °C was relatively low (less than 2000). [Pg.249]

Ring-opening polymerization of a-methyl-substituted medium-size lactones, a-methyl-y-valerolactone and a-methyl-c-caprolactone, proceeded by using lipase CA catalyst in bulk [82]. As to (R)- and (S)-3-methyl-4-oxa-6-hexa-nolides (MOHELs), lipase PC induced the polymerization of both isomers. The apparent initial rate of the S-isomer was seven times larger than that of the R-isomer, indicating that the enantioselective polymerization of MOHEL took place through lipase catalysis [83]. [Pg.250]

Enzyme activity for the polymerization of lactones was improved by the immobilization on Celite [93]. Immobilized lipase PF adsorbed on a Celite showed much higher catalytic activity than that before the immobilization. The catalytic activity was further enhanced by the addition of a sugar or poly(ethylene glycol) in the immobilization. Surfactant-coated lipase efficiently polymerized the ring-opening polymerization of lactones in organic solvents [94]. [Pg.250]

An alcohol could initiate the ring-opening polymerization of lactones by lipase catalyst ( initiator method ). In the lipase CA-catalyzed polymerization of DDL using 2-hydroxyethyl methacrylate as initiator, the methacryloyl group was quantitatively introduced at the polymer terminal, yielding the methacryl-type polyester macromonomer [98]. This methodology was expanded to synthesis of co-alkenyl- and alkynyl-type macromonomers by using 5-hexen-l-ol and 5-hexyn-l-ol as initiator. [Pg.253]

The high level of interest in the ring-opening polymerization (ROP) of cyclic esters (lactones) stems from the biocompatibility and biodegradability of their polymers. Resorbable aliphatic... [Pg.36]

Table 2 Ring-opening polymerization of lactones initiated by lanthanide complexes (CL = e-caprolactone LA = lactide TMC = trimethylene carbonate). [Pg.50]

Poly(3-hydroxyalkanoate)s have potential for application to engineering plastics endowed with biodegradable nature. One of the synthetic approaches to the polyesters is the ring-opening polymerization of -substituted /3-lactones which can be effectively produced by ring-expansion carbonylation of epox-... [Pg.234]

Aluminum Alkoxides Mediated Ring Opening Polymerization of Lactones and Lactides... [Pg.6]


See other pages where Lactones ring-opening polymerization is mentioned: [Pg.27]    [Pg.10]    [Pg.255]    [Pg.27]    [Pg.10]    [Pg.255]    [Pg.245]    [Pg.18]    [Pg.85]    [Pg.86]    [Pg.225]    [Pg.233]    [Pg.113]    [Pg.197]    [Pg.207]    [Pg.209]    [Pg.209]    [Pg.216]    [Pg.240]    [Pg.664]    [Pg.51]    [Pg.202]   
See also in sourсe #XX -- [ Pg.85 , Pg.286 , Pg.287 ]




SEARCH



Aluminum Alkoxides Mediated Ring Opening Polymerization of Lactones and Lactides

Coordinative Ring-Opening Polymerization of Lactones

Lactone opening

Lactone polymerization

Lactone ring-opening polymerization

Lactone ring-opening polymerization CALB)

Lactones polymerization

Ring lactones

Ring-Opening Polymerization of Bicyclic Lactones

Ring-Opening Polymerization of Cyclic Esters (Lactones)

Ring-opening polymerization of lactones

Ring-opening polymerization ©Substituted lactones

© 2019 chempedia.info