Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactams, hydroxy synthesis

Similarly, the acid hydrolysis of (3-lactam 7 has been described [55] to give the a-hydroxy (3-amino acid 8, a suggested /V-temiinal component of angiotensinconverting enzyme inhibitor microginin 4, Scheme 2. The key precursor 7 was obtained through a Wittig olefination of the 4-formyl (3-lactam 5, followed by simple elaboration of the resulting 6 (for a review on the use of 4—formyl (3-lactams in synthesis, see [56]). [Pg.215]

KETONE, CONJUGATE ALLYLATION OF a,g-UNSATURATEO. 62, 86 KETONE, a-TERT-AUYLATION, 62. 95 Ketones, a,6-acetylen1c, asymnetrlc reduction, 63, 63 Ketones, cyclic, lactams from, 63, 188 Ketones, e-hydroxy-, synthesis of, 63, 79... [Pg.135]

Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

All that remains before the final destination is reached is the introduction of the C-l3 oxygen and attachment of the side chain. A simple oxidation of compound 4 with pyridinium chlorochro-mate (PCC) provides the desired A-ring enone in 75 % yield via a regioselective allylic oxidation. Sodium borohydride reduction of the latter compound then leads to the desired 13a-hydroxy compound 2 (83% yield). Sequential treatment of 2 with sodium bis(trimethylsilyl)amide and /(-lactam 3 according to the Ojima-Holton method36 provides taxol bis(triethylsilyl ether) (86 % yield, based on 89% conversion) from which taxol (1) can be liberated, in 80 % yield, by exposure to HF pyridine in THF at room temperature. Thus the total synthesis of (-)-taxol (1) was accomplished. [Pg.670]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

Dutton reported on the synthesis of an e-caprolactam analog of an anthelmintic cyclic peptide. The a-hydroxy-e-caprolactam 44 was generated in an ex chiral pool synthesis staring from malic acid. The a-hydroxy carboxylic acid unit was protected as a dioxolanone in 43. The protective group served simultaneously as the reactive function during cyclization lactam 44 formation succeeded by ring opening of the dioxolanone 43 by the nucleophilic attack of the amino function, Eq. (8) [14]. [Pg.134]

Ojima, 1., Habus, 1., Zhao, M. (1991) Efficient and Practical Asymmetric Synthesis ofthe Taxol C-13 Side Chain, N-Benzoyl-(2R,3S)-3-phenylisoserine, and its Analogues via Chiral 3-Hydroxy-4-aryl-b-lactams Through Chiral Ester Enolate-Imine Cyclocondensation. Journal of Organic Chemistry, 56, 1681-1683. [Pg.196]

In 1999, this methodology was applied to the synthesis of unnatural biologically active ( + )-5-epi-nojirimycin-5-lactam, a potent and selective glycosidase inhibitor.The key step of this synthesis was the asymmetric reduction of a cyclic triacetyloxy meso imide under the same conditions to those described above, which resulted in the formation of the corresponding hydroxy 5-lactam in good yield and enantioselectivity of 85% ee (Scheme 10.59). [Pg.338]

The hydroxy lactams are postulated to be intermediates in transformations of enol lactones to ene lactams. This hypothesis was proved by synthesis. For example, treatment of N-methylhydrastine (98) with dilute ammonium hydroxide resulted in hydroxy lactam 148, which by the action of hydrochloric acid underwent dehydration to produce fumaridine (113) (5). Similarily, fumschleicherine (120) in reaction with trifluoroacetic acid gave fumaramine (111) 121). Narceine amide (149) was prepared from (Z)-narceine enol lactone (101) in likewise fashion 100,122) and dehydrated to narceine imide (116). A large number of N-alkylated narceine amides was synthesized from (Z)-narceine enol lactone (101) and primary amines by Czech investigators for... [Pg.276]

Kayser, M.M., Drolet, M. and Stewart, J.D. (2005) Application of newly available bio-reducing agents to the synthesis of chiral hydroxy-beta-lactams model for aldose reductase selectivity. Tetrahedron Asymmetry, 16 (24), 4004-4009. [Pg.163]

The same group has developed the enantiospecffic synthesis of a-hydroxy [5-lactams 224 from readily available carbohydrates (Scheme 9.72) [123]. Microwave-assisted chemical reactions have been utilized for the preparation of these 3-hydroxy-2-azetidinones 224 and their subsequent conversion to enantiomeric forms of intermediates for natural products. [Pg.337]

Another chiral auxiliary for controlling the absolute stereochemistry in Mukaiyama aldol reactions of chiral silyl ketene acetals has been derived from TV-methyl ephedrine.18 This has been successfully applied to the enantioselec-tive synthesis of various natural products19 such as a-methyl-/ -hydroxy esters (ee 91-94%),18,20 a-methyl-/Miydroxy aldehydes (91% ee),21 a-hydrazino and a-amino acids (78-91% ee),22 a-methyl-d-oxoesters (72-75% ee),20b cis- and trans-l1-lactams (70-96% ee),23 and carbapenem antibiotics.24... [Pg.145]

P-Lactams. Diketene can function as an equivalent to acetylketene, CH3C0CH=C=0, to provide 3-acetyl-p-lactams by [2 + 2]cycloaddition with imines.1 A stereoselective cycloaddition of this type can furnish a useful precursor (2) to lp-methylcarbapenems. Thus reaction of diketene with the chiral imine 1, prepared in a few steps from the readily available methyl (S)-3-hydroxy-2-meth-ylpropionate (Aldrich), can provide the desired 3,4-frpreviously developed for synthesis of the antibacterial carbapenem 4. [Pg.142]

For a review of the synthesis of lactones and lactams, see Wolfe Ogliaruso, in Palai The Chemistry of Acid Derivatives, pt. 2 Wiley New York, 1979, pp. 1062-1330. For a list of methods for converting hydroxy acids to lactones, with references, see Ref. 508, pp. 941-943. [Pg.394]

This reaction was used to introduce the final two skeletal carbons in a total synthesis of maytansine (4).2 The reaction of the 2,/ -unsaturated aldehyde (2) with I (R = C6H5) gives the desired 4,5-unsaturated 3-hydroxy ester 3 in 80% yield. The ratio of the desired (S)-alcohol to the epimer is 93 7. The resulting amino acid was cyclized to the lactam in 80% yield with mesitylenesulfonyl chloride (8, 318-319). Epoxidation by the Sharpless procedure (9, 78 79) was also highly stereoselective, giving the desired epoxide and the undesired epimer in the ratio > 200 1. [Pg.406]


See other pages where Lactams, hydroxy synthesis is mentioned: [Pg.361]    [Pg.266]    [Pg.361]    [Pg.297]    [Pg.8]    [Pg.65]    [Pg.85]    [Pg.251]    [Pg.475]    [Pg.232]    [Pg.616]    [Pg.183]    [Pg.35]    [Pg.249]    [Pg.23]    [Pg.95]    [Pg.97]    [Pg.340]    [Pg.678]    [Pg.184]    [Pg.39]    [Pg.839]    [Pg.84]    [Pg.447]    [Pg.49]    [Pg.685]    [Pg.56]    [Pg.666]    [Pg.44]   


SEARCH



7-Hydroxy-7-lactam

Hydroxy synthesis

© 2024 chempedia.info