Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kohn-Sham equations local density approximation

In usual practice, all single-particle wave functions and energies are typically obtained by solving the single-particle Kohn-Sham equation of density-functional theory in the so-called local-density approximation (LDA) (see, e.g.. Ref. [48]). [Pg.274]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

In principle, the KS equations would lead to the exact electron density, provided the exact analytic formula of the exchange-correlation energy functional E was known. However, in practice, approximate expressions of Exc must be used, and the search of adequate functionals for this term is probably the greatest challenge of DFT8. The simplest model has been proposed by Kohn and Sham if the system is such that its electron density varies slowly, the local density approximation (LDA) may be introduced ... [Pg.87]

The inherent problems associated with the computation of the properties of solids have been reduced by a computational technique called Density Functional Theory. This approach to the calculation of the properties of solids again stems from solid-state physics. In Hartree-Fock equations the N electrons need to be specified by 3/V variables, indicating the position of each electron in space. The density functional theory replaces these with just the electron density at a point, specified by just three variables. In the commonest formalism of the theory, due to Kohn and Sham, called the local density approximation (LDA), noninteracting electrons move in an effective potential that is described in terms of a uniform electron gas. Density functional theory is now widely used for many chemical calculations, including the stabilities and bulk properties of solids, as well as defect formation energies and configurations in materials such as silicon, GaN, and Agl. At present, the excited states of solids are not well treated in this way. [Pg.77]

This approximation uses only the local density to define the approximate exchange-correlation functional, so it is called the local density approximation (LDA). The LDA gives us a way to completely define the Kohn-Sham equations, but it is crucial to remember that the results from these equations do not exactly solve the true Schrodinger equation because we are not using the true exchange-correlation functional. [Pg.15]

In the remainder of this section, we give a brief overview of some of the functionals that are most widely used in plane-wave DFT calculations by examining each of the different approaches identified in Fig. 10.2 in turn. The simplest approximation to the true Kohn-Sham functional is the local density approximation (LDA). In the LDA, the local exchange-correlation potential in the Kohn-Sham equations [Eq. (1.5)] is defined as the exchange potential for the spatially uniform electron gas with the same density as the local electron density ... [Pg.216]

Kohn-Sham Equations. The set of equations obtained by applying the Local Density Approximation to a general multi-electron system. An Exchange/Correlation Functional which depends on the electron density has replaced the Exchange Energy expression used in the Hartree-Fock Equations. The Kohn-Sham equations become the Roothaan-Hall Equations if this functional is set equal to the Hartree-Fock Exchange Energy expression. [Pg.762]

After the discovery of the relativistic wave equation for the electron by Dirac in 1928, it seems that all the problems in condensed-matter physics become a matter of mathematics. However, the theoretical calculations for surfaces were not practical until the discovery of the density-functional formalism by Hohenberg and Kohn (1964). Although it is already simpler than the Hartree-Fock formalism, the form of the exchange and correlation interactions in it is still too complicated for practical problems. Kohn and Sham (1965) then proposed the local density approximation, which assumes that the exchange and correlation interaction at a point is a universal function of the total electron density at the same point, and uses a semiempirical analytical formula to represent such universal interactions. The resulting equations, the Kohn-Sham equations, are much easier to handle, especially by using modern computers. This method has been the standard approach for first-principles calculations for solid surfaces. [Pg.112]

Density functional theory, 21, 31, 245-246 B3LYP functional, 246 Hartree-Fock-Slater exchange, 246 Kohn-Sham equations, 245 local density approximation, 246 nonlocal corrections, 246 Density matrix, 232 Determinantal wave function, 23 Dewar benzene, 290 from acetylene + cyclobutadiene, 290 interaction diagram, 297 rearrangement to benzene, 290, 296-297 DFT, see Density functional theory... [Pg.365]

This argument shows that the locality hypothesis fails for more than two electrons because the assumed Frechet derivative must be generalized to a Gateaux derivative, equivalent in the context of OEL equations to a linear operator that acts on orbital wave functions. The conclusion is that the use by Kohn and Sham of Schrodinger s operator t is variationally correct, but no equivalent Thomas-Fermi theory exists for more than two electrons. Empirical evidence (atomic shell structure, chemical binding) supports the Kohn-Sham choice of the nonlocal kinetic energy operator, in comparison with Thomas-Fermi theory [288]. A further implication is that if an explicit approximate local density functional Exc is postulated, as in the local-density approximation (LDA) [205], the resulting Kohn-Sham theory is variation-ally correct. Typically, for Exc = f exc(p)p d3r, the density functional derivative is a Frechet derivative, the local potential function vxc = exc + p dexc/dp. [Pg.74]

For direct Af-electron variational methods, the computational effort increases so rapidly with increasing N that alternative simplified methods must be used for calculations of the electronic structure of large molecules and solids. Especially for calculations of the electronic energy levels of solids (energy-band structure), the methodology of choice is that of independent-electron models, usually in the framework of density functional theory [189, 321, 90], When restricted to local potentials, as in the local-density approximation (LDA), this is a valid variational theory for any A-electron system. It can readily be applied to heavy atoms by relativistic or semirelativistic modification of the kinetic energy operator in the orbital Kohn-Sham equations [229, 384],... [Pg.93]

The exchange-correlation potential is the source of both the strengths and the weaknesses of the DF approach. In HF theory, the analytical form of the term equivalent to Vxc, the exchange potential, arises directly during the derivation of the equations, but it depends upon the one-particle density matrix, making it expensive to calculate. In DF theory the analytical form of Vxc must be put into the calculations because it does not come from the derivation of the Kohn-Sham equations. Thus, it is possible to choose forms for Vxc that depend only upon the density and its derivatives and which are cheap to calculate (the so-called local and non-local density approximations). The Vxc factor can also be chosen to account for some of the correlation between the electrons, in contrast to HF methods for which additional calculations must be made. The drawback is that there does not appear to be any systematic way of improving the potential. Indeed, many such terms have been proposed. [Pg.135]

Density functional theory, 21, 31, 245-246 B3LYP functional, 246 Hartree-Fock-Slater exchange, 246 Kohn-Sham equations, 245 local density approximation, 246 nonlocal corrections, 246... [Pg.331]


See other pages where Kohn-Sham equations local density approximation is mentioned: [Pg.411]    [Pg.133]    [Pg.64]    [Pg.82]    [Pg.272]    [Pg.45]    [Pg.111]    [Pg.170]    [Pg.262]    [Pg.47]    [Pg.65]    [Pg.129]    [Pg.209]    [Pg.51]    [Pg.75]    [Pg.5]    [Pg.153]    [Pg.188]    [Pg.13]    [Pg.333]    [Pg.199]    [Pg.82]    [Pg.252]    [Pg.101]    [Pg.101]    [Pg.61]    [Pg.73]    [Pg.206]    [Pg.161]    [Pg.242]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Density approximate

Density equations

Equation local

Kohn

Kohn equations

Kohn-Sham

Kohn-Sham approximation

Kohn-Sham density

Kohn-Sham equation

Kohn-Sham equation, density

Local approximation

Local density approximation

Shams

© 2024 chempedia.info