Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics-metal complex dissociation

The preceding sections have demonstrated the considerable quantitative understanding of biouptake that can be attained by models with a sound theoretical basis. We have shown solutions for a range of conditions, ranging from relatively simple limiting cases to more involved situations involving kinetically limited metal complex dissociation fluxes. In this section, we highlight key points that should be considered in future refinements of biouptake models. [Pg.190]

Shuman and Michael [10] applied a rotating disk electrode to the measurement of copper complex dissociation rate constants in marine coastal waters. An operational definition for labile and non-labile metal complexes was established on kinetic criteria. Samples collected off the mid-Atlantic coast of USA showed varying degrees of copper chelation. It is suggested that the technique should be useful for metal toxicity studies because of its ability to measure both equilibrium concentrations and kinetic availability of soluble metal. [Pg.333]

De Jong, H. G. and van Leeuwen, H. P. (1987). Voltammetry of metal-complex systems with different diffusion-coefficients of the species involved. 2. Behaviour of the limiting current and its dependence on association/dissociation kinetics and lability, J. Electroanal. Chem., 234, 17-29. [Pg.200]

If the metals bound in complexes exchange with biological ligands, the dissociation kinetics of these complexes, the ligand-exchange kinetics and the association kinetics with the biological ligands must be considered. Simple dissociation kinetics of complexes are related to their thermodynamic stability constants by the relationship ... [Pg.217]

The kinetics and mechanisms of substitution reactions of metal complexes are discussed with emphasis on factors affecting the reactions of chelates and multidentate ligands. Evidence for associative mechanisms is reviewed. The substitution behavior of copper(III) and nickel(III) complexes is presented. Factors affecting the formation and dissociation rates of chelates are considered along with proton-transfer and nucleophilic substitution reactions of metal peptide complexes. The rate constants for the replacement of tripeptides from copper(II) by triethylene-... [Pg.9]

There is ample evidence that the reductive elimination of alkanes (and the reverse) is a not single-step process, but involves a o-alkane complex as the intermediate. Thus, looking at the kinetics, reductive elimination and oxidative addition do not correspond to the elementary steps. These terms were introduced at a point in time when o-alkane complexes were unknown, and therefore new terms have been introduced by Jones to describe the mechanism and the kinetics of the reaction [5], The reaction of the o-alkane complex to the hydride-alkyl metal complex is called reductive cleavage and its reverse is called oxidative coupling. The second part of the scheme involves the association of alkane and metal and the dissociation of the o-alkane complex to unsaturated metal and free alkane. The intermediacy of o-alkane complexes can be seen for instance from the intramolecular exchange of isotopes in D-M-CH3 to the more stable H-M-CH2D prior to loss of CH3D. [Pg.392]

Bipyridyl (continued) as ligand, 12 135-1% catalysis, 12 157-159 electron-transfer reactions, 12 153-157 formation, dissociation, and racemization of complexes, 12 149-152 kinetic studies, 12 149-159 metal complexes with, in normal oxidation states, 12 175-189 nonmetal complexes with, 12 173-175 oxidation-reduction potentials, 12 144-147... [Pg.24]

Dale Margerum Ralph Wilkins has mentioned the interesting effect of terpyridine on the subsequent substitution reaction of the nickel complex. I would like to discuss this point—namely the effect of coordination of other ligands on the rate of substitution of the remaining coordinated water. However, before proceeding we should first focus attention on the main point of this paper-which is that a tremendous amount of kinetic data for the rate of formation of all kinds of metal complexes can be correlated with the rate of water substitution of the simple aquo metal ion. This also means that dissociation rate constants of metal complexes can be predicted from the stability constants of the complexes and the rate constant of water exchange. The data from the paper are so convincing that we can proceed to other points of discussion. [Pg.66]

The product elimination step proceeds with cleavage of the catalyst-substrate bonds. This may occur by dissociation, solvolysis, or a coupling of substrate moieties to form the product. The last of these involves covalent bond formation within the product, and corresponds to the microscopic reverse of oxidative addition. Upon reductive elimination both the coordination number and formal oxidation state of the metal complex decrease. In most homogeneous catalytic processes, the product elimination step, while essential, is usually not rate determining. The larger kinetic barriers are more frequently encountered in substrate activation and/or transformation. [Pg.83]

It has already been stated that chromium complexes of tridentate metallizable azo compounds occupy their position as the single most important class of metal complex dyestuffs because of their high stability. It should be noted, however, that in this context the term stability is not used in the thermodynamic sense but relates to the kinetic inertness of the complexes.25 Octahedral chromium(III) complexes have a tP electronic configuration and the ligand field stabilization energy associated with this is high.26 Ligand replacement reactions involve either a dissociative... [Pg.46]

The chapter table of contents contains subjects that were either unknown or merely distant hopes a decade ago, such as persistent silylenes, the dissociation of disilenes to silylenes and terminal silylene-transition metal complexes. The kinetics and spectroscopy of silylenes and theoretical treatments of silylene structure and reactivity have made such gigantic strides in the intervening years that they represent new vistas in our understanding. [Pg.2464]


See other pages where Kinetics-metal complex dissociation is mentioned: [Pg.215]    [Pg.60]    [Pg.1472]    [Pg.1441]    [Pg.1400]    [Pg.88]    [Pg.464]    [Pg.21]    [Pg.89]    [Pg.898]    [Pg.201]    [Pg.227]    [Pg.464]    [Pg.472]    [Pg.472]    [Pg.532]    [Pg.206]    [Pg.211]    [Pg.209]    [Pg.99]    [Pg.115]    [Pg.470]    [Pg.395]    [Pg.402]    [Pg.233]    [Pg.138]    [Pg.394]    [Pg.284]    [Pg.1070]    [Pg.155]    [Pg.575]    [Pg.968]    [Pg.96]    [Pg.49]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Complexation kinetics

Complexes dissociation kinetics

Complexes, dissociation

Kinetic complexity

Kinetics complexes

Kinetics dissociative

© 2024 chempedia.info