Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics macrocyclic ligands

It is appropriate to identify our approach to developing the present review in the context of the Co chapter in CCC(1987). The first-edition chapter on Co featured a focused discussion and tabulation of synthetic methods, and many of these basic methods are still employed in synthesis today. Consequently, to avoid repetition, there will be diminished description here where prior appropriate methods have been provided, and only newer developments featured. The last two decades feature the development of many mixed-donor and sophisticated multidentate and macrocyclic ligands, which found limited coverage in the previous edition, and these will be discussed in more detail herein. Reaction kinetics and mechanism were also described thoroughly in the previous edition. We shall not reiterate this material, since the core mechanisms of many reactions involving Co compounds are now adequately defined. [Pg.3]

One of the most fundamental questions when dealing with the activation of dioxygen by transition metal complexes is whether the process is controlled kinetically by ligand substitution or by electron transfer. A model system that involved the binding of dioxygen to a macrocyclic hexamethylcyclam Co(II) complex to form the correspond-... [Pg.24]

The study of the complexing of macrocycle ligands should be considered for its intrinsic importance rather than for its value in illuminating the mechanism of substitution. Kinetic (but much more thermodynamic °) data are available for the reactions of the different macrocycle ligand types, shown in Fig. 4.5, including azamacrocycles,crown ethers and cryp-tands, and porphyrins. ... [Pg.224]

Inversion at the N center is coupled to conformational changes in a chelate ring. The kinetics of inversion at asymmetric N centers in complexes of tetraaza linear or macrocyclic ligands have received scant attention. There are five configurational isomers of the planar complex Ni([14]aneN4) +, Sec. 3.1.1. The interconversions between such structures are base catalyzed with second-order rate constants covering a small range from 1.2 x 10 to 2.4 x 10 M- s- Refs. 108-110. [Pg.364]

All these methods have found applications in theoretical considerations of numerous problems more or less directly related to solvent extraction. The MM calculated structures and strain energies of cobalt(III) amino acid complexes have been related to the experimental distribution of isomers, their thermodynamic stability, and some kinetic data connected with transition state energies [15]. The influence of steric strain upon chelate stability, the preference of metal ions for ligands forming five- and six-membered chelate rings, the conformational isomerism of macrocyclic ligands, and the size-match selectivity were analyzed [16] as well as the relation between ligand structures, coordination stereochemistry, and the thermodynamic properties of TM complexes [17]. [Pg.682]

Halo-alkenes are common pollutants. Therefore, there is an ongoing study on plausible approaches to the dehalogenation of halo-alkanes. One of these approaches involves their electrocatalytic reduction. NinL2 + (L = a tetraaza macrocyclic ligand) complexes were proposed as plausible electrocatalysts (150). A pulse radiolytic study on the mechanism and kinetics of the reaction ... [Pg.301]

The thermodynamic and kinetic stabilization ofnickel(III) macrocyclic complexes by axial coordination has prompted a number of new approaches. Studies with tetraaza macrocyclic ligands with pendant donors acting as potential fifth ligands have had some success (96, 99,100). Oxidation of [Ni"[14]aneN4CH2CH2py]2+ in aqueous solution... [Pg.258]

The complexation of various molecular anions by other types of macrocyclic ligands has been reported [3.1-3.4] in particular with cyclophane-type compounds. Two such receptors are represented by the protonated forms of the macropolycycles 40 [3.29] and 41 [3.30]. Quaternary polybipyridinium compounds also bind anionic substrates [3.31]. Progress is also being made towards the developments of neutral anion receptor molecules [3.32]. The thermodynamic and kinetic data for anion complexation by macrocyclic receptors have been reviewed [2.18c]. [Pg.35]

Three new macrocyclic ligands (187) when complexed with zinc(II) could promote ester hydrolysis and a kinetic study of the hydrolysis of 4-nitrophenyl acetate in Tris buffer at pH 8.63 in 10% (v/v) MeCN was earned out with these.153 The hydrolysis of lipophilic esters is also catalysed by zinc(H) in a complex of a long alkyl-pendant macrocyclic tetraamine (188) in micellar solution.154 A study with a copper chloride-containing micelle has compared its effectiveness in the hydrolysis of esters and amides.155... [Pg.64]

After the importance of the kinetic stability of the Gd3+ chelates was realized, a number of authors studied the kinetic properties of such complexes. Some of these studies were performed in order to demonstrate the inertness (or lability) of the complex of interest, while in other works the kinetic parameters were also determined. In the following, we shall present first the results of certain qualitative studies, which experimentally prove the importance of the kinetic stability of Gd3+ chelates. Since the kinetics of dissociation of complexes formed with the open-chain and macrocyclic ligands differ quite considerably, we shall discuss the kinetic properties of the complexes formed with DTPA and its derivatives and with DOTA and its derivatives in separate sections. [Pg.111]

The results of kinetic studies indicate that the kinetic stabilities can be increased through the use of more rigid ligands. It is probable that mainly macrocyclic ligands (e.g. DOTA) or possibly some more rigid DTPA derivatives (e.g. CHX-DTPA) will be used for the synthesis of macromolecules with attached Gd3+ comlexes. [Pg.120]

Why is it that these metal-directed reactions are so dominant in the preparative chemistry of macrocyclic ligands The answer to this lies in part in the great stability that is often associated with macrocyclic complexes. Very often, the complexes exhibit high kinetic and thermodynamic stabilities. [Pg.153]

In addition to their thermodynamic stability, complexes of macrocyclic ligands are also kinetically stable with respect to the loss of metal ion. It is often very difficult (if not impossible) to remove a metal from a macrocyclic complex. Conversely, the principle of microscopic reversibility means that it is equally difficult to form the macrocyclic complexes from a metal ion and the free macrocycle. We saw earlier that it was possible to reduce co-ordinated imine macrocycles to amine macrocyclic complexes in order to remove the nickel from the cyclam complex that is formed, prolonged reaction with hot potassium cyanide solution is needed (Fig. 6-24). [Pg.157]

In terms of template reactions, this combination of kinetic and thermodynamic stability usually means that the metal ion remains co-ordinated to the macrocyclic ligand and the isolation of the metal complex of the macrocycle provides strong circumstantial evidence for the existence of a metal-directed process. This is particularly easy to establish if the incorporation of the metal ion into the macrocyclic ligand can be shown to be slower than the metal-directed formation reaction. [Pg.158]

What should we do to observe a three-dimensional template effect First, we should choose a reaction type that we know to be effective for the formation of macrocyclic ligands and extend the methodology to a kinetically inert cP or d6 metal centre. Let us reconsider the reaction, that we first encountered in Fig. 6-11. In this reaction, a dioximato complex reacted with BF3 to give the nickel(n) complex of a dianionic macrocycle (Fig. 7-1). [Pg.183]

In this article the design, synthesis and d-block metal ion chemistry of some more recent examples of covalently-linked, macrocyclic ligand systems are discussed. The use of macrocyclic rings in such systems is not surprising given that the resulting macrocyclic complexes often exhibit both enhanced kinetic and thermodynamic stabilities and hence tend to retain their integrity under a variety of conditions - a lesson that nature knows well. [Pg.53]


See other pages where Kinetics macrocyclic ligands is mentioned: [Pg.402]    [Pg.17]    [Pg.257]    [Pg.915]    [Pg.857]    [Pg.894]    [Pg.898]    [Pg.898]    [Pg.201]    [Pg.208]    [Pg.209]    [Pg.96]    [Pg.113]    [Pg.135]    [Pg.214]    [Pg.304]    [Pg.285]    [Pg.124]    [Pg.466]    [Pg.633]    [Pg.60]    [Pg.55]    [Pg.1104]    [Pg.257]    [Pg.111]    [Pg.113]    [Pg.157]    [Pg.158]    [Pg.183]    [Pg.350]    [Pg.268]    [Pg.96]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Macrocycle kinetic

Macrocycles Macrocyclic ligands

© 2024 chempedia.info