Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic modeling dynamic model

The BET treatment is based on a kinetic model of the adsorption process put forward more than sixty years ago by Langmuir, in which the surface of the solid was regarded as an array of adsorption sites. A state of dynamic equilibrium was postulated in which the rate at which molecules arriving from the gas phrase and condensing on to bare sites is equal to the rate at which molecules evaporate from occupied sites. [Pg.42]

Among the dynamical properties the ones most frequently studied are the lateral diffusion coefficient for water motion parallel to the interface, re-orientational motion near the interface, and the residence time of water molecules near the interface. Occasionally the single particle dynamics is further analyzed on the basis of the spectral densities of motion. Benjamin studied the dynamics of ion transfer across liquid/liquid interfaces and calculated the parameters of a kinetic model for these processes [10]. Reaction rate constants for electron transfer reactions were also derived for electron transfer reactions [11-19]. More recently, systematic studies were performed concerning water and ion transport through cylindrical pores [20-24] and water mobility in disordered polymers [25,26]. [Pg.350]

In this work, the MeOH kinetic model of Lee et al. [9] is adopted for the micro-channel fluid dynamics analysis. Pressure and concentration distributions are investigated and represented to provide the physico-chemical insight on the transport phenomena in the microscale flow chamber. The mass, momentum, and species equations were employed with kinetic equations that describe the chemical reaction characteristics to solve flow-field, methanol conversion rate, and species concentration variations along the micro-reformer channel. [Pg.645]

The contribution of different crystal planes to the overall surface area of the particle can thus be calculated and is shown in Fig. 8.12(b). The results have been included in a dynamical micro-kinetic model of the methanol synthesis, yielding a better description of kinetic measurements on working catalysts [C.V. Ovesen, B.S. Clausen, J. Schiotz, P. Stoltze, H. Topsoe and J.K. Norskov, J. Catal. 168 (1997) 133]. [Pg.317]

GP 1] [R 1] A kinetic model for the oxidation of ammonia was coupled to a hydro-dynamic description and analysis of heat evolution [98], Via regression analysis and adjustment to experimental data, reaction parameters were derived which allow a quantitative description of reaction rates and selectivity for all products trader equilibrium conditions. The predictions of the model fit experimentally derived data well. [Pg.298]

A large number of research and review papers have been published in recent years on the integration of data on physicochemical properties, in vitro derived toxicity data, and physiologically based kinetics and dynamics as a modeling tool in hazard and risk assessment [72-85]. [Pg.93]

As a third example let us consider the growth kinetics in a chemostat used by Kalogerakis (1984) to evaluate sequential design procedures for model discrimination in dynamic systems. We consider the following four kinetic models for biomass growth and substrate utilization in the continuous baker s yeast fermentation. [Pg.213]

Monomer concentrations Ma a=, ...,m) in a reaction system have no time to alter during the period of formation of every macromolecule so that the propagation of any copolymer chain occurs under fixed external conditions. This permits one to calculate the statistical characteristics of the products of copolymerization under specified values Ma and then to average all these instantaneous characteristics with allowance for the drift of monomer concentrations during the synthesis. Such a two-stage procedure of calculation, where first statistical problems are solved before dealing with dynamic ones, is exclusively predetermined by the very specificity of free-radical copolymerization and does not depend on the kinetic model chosen. The latter gives the explicit dependencies of the instantaneous statistical characteristics on monomers concentrations and the rate constants of the elementary reactions. [Pg.176]

Model dynamics were forced to steady state by setting derivatives for the melt complexes in Eq. (61) to zero (Bunimovich et al., 1995). This should make the model behave as though the steady-state kinetic model... [Pg.246]

Finally, accurate theoretical kinetic and dynamical models are needed for calculating Sn2 rate constants and product energy distributions. The comparisons described here, between experimental measurements and statistical theory predictions for Cl"+CHjBr, show that statistical theories may be incomplete theoretical models for Sn2 nucleophilic substitution. Accurate kinetic and dynamical models for SN2 nucleophilic substitution might be formulated by introducing dynamical attributes into the statistical models or developing models based on only dynamical assumptions. [Pg.154]

Timm, Gilbert, Ko, and Simmons O) presented a dynamic model for an isothermal, continuous, well-mixed polystyrene reactor. This model was in turn based upon the kinetic model developed by Timm and co-workers (2-4) based on steady state data. The process was simulated using the model and a simple steady state optimization and decoupling algorithm was tested. The results showed that steady state decoupling was adequate for molecular weight control, but not for the control of production rate. In the latter case the transient fluctuations were excessive. [Pg.187]

A unified gas hydrate kinetic model (developed at ARC) coupled with a thermal reservoir simulator (CMG STARS) was applied to simulate the dynamics of CH4 production and C02 sequestration processes in the Mallik geological zones. The kinetic model contains two mass transfer equations one equation transfers gas and water into hydrate, and a decomposition equation transfers hydrate into gas and water (Uddin etal. 2008a). [Pg.161]

In our studies we have demonstrated that the redox mechanism that was used to model dynamic behavior of CO oxidation is consistent with a kinetic model of the selective CO oxidation obtained under steady-state mode of operation [62], We propose the following tentative scheme (Figure 7.15) for the selective CO oxidation over the CuolCe(J902 v catalyst CO and H2 adsorb on the... [Pg.221]

Aiming to construct explicit dynamic models, Eqs. (5) and (6) provide the basic relationships of all metabolic modeling. All current efforts to construct large-scale kinetic models are based on an specification of the elements of Eq (5), usually involving several rounds of iterative refinement For a schematic workflow, see again Fig. 4. In the following sections, we provide a brief summary of the properties of the stoichiometric matrix (Section III.B) and discuss the most common functional form of enzyme-kinetic rate equations (Section III.C). A selection of explicit kinetic models is provided in Table I. TABLE I Selected Examples of Explicit Kinetic Models of Metabolisin 1 ... [Pg.123]

The next step in formulating a kinetic model is to express the stoichiometric and regulatory interactions in quantitative terms. The dynamics of metabolic networks are predominated by the activity of enzymes proteins that have evolved to catalyze specific biochemical transformations. The activity and specificity of all enzymes determine the specific paths in which metabolites are broken down and utilized within a cell or compartment. Note that enzymes do not affect the position of equilibrium between substrates and products, rather they operate by lowering the activation energy that would otherwise prevent the reaction to proceed at a reasonable rate. [Pg.127]

Structural kinetic modeling keeps the advantages of the stoichiometric analysis, while incorporating dynamic aspects into the description of the system. [Pg.188]

Figure 25. Structural Kinetic Modeling seeks to keep the advantages of stoichiometric analysis, while incorporating dynamic properties into the description of the system. Specifically, SKM aims to give a quantitative account of the possible dynamics of a metabolic network. Figure 25. Structural Kinetic Modeling seeks to keep the advantages of stoichiometric analysis, while incorporating dynamic properties into the description of the system. Specifically, SKM aims to give a quantitative account of the possible dynamics of a metabolic network.
The basic idea is very simple In many scenarios the construction of an explicit kinetic model of a metabolic pathway is not necessary. For example, as detailed in Section IX, to determine under which conditions a steady state loses its stability, only a local linear approximation of the system at this respective state is needed, that is, we only need to know the eigenvalues of the associated Jacobian matrix. Similar, a large number of other dynamic properties, including control coefficients or time-scale analysis, are accessible solely based on a local linear description of the system. [Pg.189]

Nonetheless, each regime corresponds to distinctive dynamic behavior, exemplified in Fig. 31 using an explicit kinetic model of the pathway. [Pg.206]

In Section VIII we have described a methodology that allows us to anticipate changes in dynamic properties, providing a suitable starting point to detect changes in dynamic properties of metabolic networks for which the construction of detailed kinetic models is not yet possible. [Pg.233]


See other pages where Kinetic modeling dynamic model is mentioned: [Pg.49]    [Pg.105]    [Pg.349]    [Pg.77]    [Pg.141]    [Pg.305]    [Pg.451]    [Pg.14]    [Pg.50]    [Pg.244]    [Pg.247]    [Pg.139]    [Pg.55]    [Pg.202]    [Pg.275]    [Pg.956]    [Pg.956]    [Pg.428]    [Pg.115]    [Pg.163]    [Pg.172]    [Pg.190]    [Pg.205]    [Pg.219]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Dynamic Models for Transient Operation Techniques (Nonstationary Kinetics)

Dynamic kinetic models

Dynamic kinetic models

Kinetic dynamic

Kinetic modeling dynamic flux analysis

Mathematical Modeling of Dynamic Process Kinetics

© 2024 chempedia.info