Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Meerwein-Ponndorf-Verley

The lithium aluminum hydride-aluminum chloride reduction of ketones is closely related mechanistically to the Meerwein-Ponndorf-Verley reduction in that the initially formed alkoxide complex is allowed to equilibrate between isomers in the... [Pg.20]

The Oppenauer Oxidation. When a ketone in the presence of base is used as the oxidizing agent (it is reduced to a secondary alcohol), the reaction is known as the Oppenauer oxidation. This is the reverse of the Meerwein-Ponndorf-Verley reaction (16-23), and the mechanism is also the reverse. The ketones most commonly used are acetone, butanone, and cyclohexanone. The most common base is aluminum r r/-butoxide. The chief advantage of the method is its high selectivity. Although the method is most often used for the... [Pg.1516]

Secondary alcohols may be oxidised to the corresponding ketones with aluminium /erl.-butoxide (or tsopropoxide) in the presence of a large excess of acetone. This reaction is known as the Oppenauer oxidation and is the reverse of the Meerwein - Ponndorf - Verley reduction (previous Section) it may be expressed ... [Pg.886]

Zr compounds are also useful as Lewis acids for oxidation and reduction reactions. Cp2ZrH2 or Cp2Zr(0 Pr)2 catalyze the Meerwein-Ponndorf-Verley-type reduction and Oppenauer-type oxidation simultaneously in the presence of an allylic alcohol and benzaldehyde (Scheme 40).170 Zr(C)1 Bu)4 in the presence of excess l-(4-dimethylaminophenyl) ethanol is also an effective catalyst for the Meerwein-Ponndorf-Verley-type reduction.1 1 Similarly, Zr(0R)4 catalyze Oppenauer-type oxidation from benzylic alcohols to aldehydes or ketones in the presence of hydroperoxide.172,173... [Pg.416]

The Meerwein-Ponndorf-Verley reaction is a classic method for ketone/ aldehyde carbonyl group reduction, which involves at least 1 equivalent of aluminum alkoxide as a promoter. In this reaction, the hydrogen is transferred from isopropanol to the ketone/aldehyde substrate, so the reaction can also be referred to as a transfer hydrogenation reaction. [Pg.377]

The Meerwein-Ponndorf-Verley (MPV) reaction is an important route in the reduction of ketones with aluminum alkoxides (111). The mechanism has been... [Pg.282]

As shown in Figure 1.26, a chiral Sm(III) complex catalyzes asymmetric reduction of aromatic ketones in 2-propanol with high enantioselectivity. Unlike other late-transition-metal catalysis, the hydrogen at C2 of 2-propanol directly migrates onto the carbonyl carbon of substrate via a six-membered transition state 26A, as seen in the Meerwein-Ponndorf-Verley reduction. ... [Pg.22]

Figure 1.26. Asymmetric Meerwein-Ponndorf-Verley-type reduction of ketones catalyzed by a Sm complex. Figure 1.26. Asymmetric Meerwein-Ponndorf-Verley-type reduction of ketones catalyzed by a Sm complex.
The reduction of ketones to secondary alcohols and of aldehydes to primary alcohols using aluminum alkoxides is called the Meerwein-Ponndorf-Verley reduction.The reverse reaction also is of synthetic value, and is called the... [Pg.199]

It was noticed as early as 1925 that alkoxides of calcium, magnesium and particularly aluminum could catalyze the reduction of aldehydes by ethanol as shown in equation (65).242,243 Removal of very volatile acetaldehyde is easily achieved to drive the reaction to the right. In 1926, Ponndorf devised a method in which both aldehydes and ketones could be reduced to alcohols by adding excess alcohol and aluminum isopropoxide.244 Such reductions are today referred to as Meerwein-Ponndorf-Verley reactions. Although alkoxides of a number of metals, e.g. sodium, boron, tin, titanium and zirconium, have been used for these reactions, those of aluminum are by far the best. [Pg.353]

Meerwein-Ponndorf-Verley-Type Reduction Reduction of ketones by 2-propanol or related alcohols, known as Meerwein-Ponndorf-Verley (MPV) reduction, is promoted by various metal alkoxides, typically aluminum 2-propoxide [2a,d,281]. The C2 hydrogen of 2-propanol is transferred directly to the carbonyl carbon through a six-membered pericyclic transition state [284], Earlier, a stoichiometric quantity of a metal alkoxide was required for this purpose, but recently, lanthanide [285] and aluminum [286] complexes acting as excellent catalysts have been reported. [Pg.70]

In this way, an aldehyde or ketone could be reduced to the corresponding alcohol after hydrolysis of the resulting aluminium alkoxide. This reaction is known as the Meerwein-Ponndorf-Verley reduction. [Pg.255]

A series of 2-substituted cyclohexanones was studied over a wide range of temperature in an attempt to optimize the diastereoselectivity of diisobutylaluminium phenoxides in the reduction of ketones.161 Hydride transfer dominates at high temperature, but a Meerwein-Ponndorf-Verley-type interconversion of the aluminium alcoholate intermediates (via the reactant ketone) is an important factor in diastereoselection at low temperature. [Pg.27]

A tandem 1,4-addition-Meerwein-Ponndorf-Verley (MPV) reduction allows the reduction of a, /i-unsaturated ketones with excellent ee and in good yield using a camphor-based thiol as reductant.274 The 1,4-addition is reversible and the high ee stems from the subsequent 1,7-hydride shift the overall process is thus one of dynamic kinetic resolution. A crossover experiment demonstrated that the shift is intramolecular. Subsequent reductive desulfurization yielded fiilly saturated compounds in an impressive overall asymmetric reductive technique with apparently wide general applicability. [Pg.209]

Catalytic reduction of unsymmetrical ketones into alcohols by concomitant oxidation of 2-propanol to acetone (Meerwein-Ponndorf-Verley reduction, MPV), with rhodium... [Pg.726]

The synthetic method (a) is the regioselective reduction of an a,/ -unsaturated aldehyde or ketone (Section 5.18.2, p. 798), which is most conveniently effected by the Meerwein-Ponndorf-Verley procedure (Section 5.4.1, p. 520). The further disconnection shown of the a, -carbonyl compound is a retro-aldol condensation (Section 5.18.2, p. 799) however it should be emphasised that other routes to the unsaturated carbonyl compound, such as the Horner-Emmons reaction (Section 5.18.2, p. 799), may also be feasible. [Pg.795]

The aluminium-catalyzed hydride shift from the a-carbon of an alcohol component to the carbonyl carbon of a second component, which proceeds over a six-membered transition state, is named Meerwein-Ponndorf-Verley-Reduction (MPV) or Oppenauer Oxidation (OPP) depending on the isolated product. If aldehydes or ketones are the desired products, the reaction is viewed as the Oppenauer Oxidation. [Pg.173]

Among the hydrogen transfer reactions, the Meerwein-Ponndorf-Verley reduction and its counterpart, the Oppenauer oxidation, are undoubtedly the most popular. These are well-established selective and mild redox reactions and they have been studied extensively [4, 5]. Nevertheless, traditional Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions have some drawbacks, as they usually suffer from poor reactivity of the traditional Al(OiPr)3/iPrOH system, for which continuous removal of the produced acetone is necessary in order to shift the equilibrium between reduction of the ketone and oxidation of the donor alcohol. [Pg.321]

The generality of schemes of this type is not clear, but it is an alternative to the e/H transfer sequences for a range of reactions in which oxidant-derived radical anions are found, including the Meerwein-Ponndorf-Verley reduction of diaryl ketones outlined above. [Pg.86]

A different approach that has been used is a ruthenium-catalyzed Meerwein-Ponndorf-Verley-type reduction of ketones using the silica-supported amino alcohol ligand 22 (Scheme 4.65). It was found necessary to cap the remaining free silica hydroxyl sites to alkylsilane derivatives to prevent catalyst deactivation. Initial studies found that slower flow rates resulted in lower ee because of equilibration back to the starting materials - after optimization, the best conditions were found to be 1400 pl/h providing a 95% conversion and 90% ee. The stability of the catalyst was investigated over time, during which a constant formation of 175 pmol/h was obtained only after a period of 7 days was some decrease in activity observed. The extended lifetime of the... [Pg.98]

Meerwein-Ponndorf-Verley reductions. Zirconocene or hafnocene can catalyze reduction of carbonyl compounds with isopropanol. This method is useful for preferential reduction of keto aldehydes to hydroxy ketones and of a,(i-enones or -enals to allylic alcohols.1... [Pg.32]

Zeolites are not typically used in Lewis acid type catalysis due to the absence of Lewis acid centers in zeolites. This is due to the coordination of the Al-site to four lattice-oxygens in a perfect zeolite framework. It has, however, been shown for zeolite Beta that the aluminum atom can reversibly move between a framework Brpnsted acid site and a framework-grafted Lewis-acid site.70 Accordingly, Creyghton et al. showed that zeolite Beta is active in the Meerwein-Ponndorf-Verley reduction (MPV) of ketones (scheme 4).71 In this reaction a hydrogen hydride transfer reaction between an alcohol and a ketone takes place. [Pg.33]


See other pages where Ketones Meerwein-Ponndorf-Verley is mentioned: [Pg.196]    [Pg.196]    [Pg.33]    [Pg.251]    [Pg.1438]    [Pg.81]    [Pg.501]    [Pg.71]    [Pg.108]    [Pg.27]    [Pg.271]    [Pg.251]    [Pg.392]    [Pg.76]    [Pg.210]    [Pg.29]    [Pg.100]    [Pg.114]   


SEARCH



Aryl ketones, Meerwein-POnndorf-Verley

Aryl ketones, Meerwein-POnndorf-Verley reduction

Meerwein

Meerwein-Ponndorf - Verley

Meerwein-Ponndorf-Verley reduction ketones

Ponndorf

© 2024 chempedia.info