Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones enantioselective reactions

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

Chiral oxazolidines 6, or mixtures with their corresponding imines 7, are obtained in quantitative yield from acid-catalyzed condensation of methyl ketones and ( + )- or ( )-2-amino-l-phcnylpropanol (norephedrine, 5) with azeotropic removal of water. Metalation of these chiral oxazolidines (or their imine mixtures) using lithium diisopropylamide generates lithioazaeno-lates which, upon treatment with tin(II) chloride, are converted to cyclic tin(II) azaenolates. After enantioselective reaction with a variety of aldehydes at 0°C and hydrolysis, ft-hydroxy ketones 8 are obtained in 58-86% op4. [Pg.600]

Keywords aldehydes, ketones, enantioselective hetera-Diels-Alder reactions... [Pg.304]

In the presence of metal catalysts such as rhodium compounds, aldehydes can add directly to alkenes to form ketones. The reaction of co-alkenyl aldehydes with rhodium catalyst leads to cyclic ketones, with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates. ° ... [Pg.1038]

The introduction of various metal-catalyzed reactions, however, remarkably expanded the scope of the epoxidation of Q,.3-unsaturatcd ketones. Enders et al. have reported that a combination of diethylzinc and A-methyl-pseudoephedrine epoxidizes various o,. j-unsaturatcd ketones, under an oxygen atmosphere, with good to high enantioselectivity (Scheme 23).126 In this reaction, diethylzinc first reacts with the chiral alcohol, and the resulting ethylzinc alkoxide is converted by oxygen to an ethylperoxo-zinc species that epoxidizes the a,/3-unsaturated ketones enantioselectively. Although a stoichiometric chiral auxiliary is needed for this reaction, it can be recovered in almost quantitative yield. [Pg.223]

Acetylenic esters react with arylboron reagents in the presence of rhodium diphosphine catalyst to give cyclic ketones.409 Equation (61) shows an example which may involve ortfe-metallation and ketone formation. A catalytic, enantioselective reaction was also achieved (Equation (62)). These processes presumably involve unprecedented addition of organorhodium species to the ester carbonyl group. [Pg.453]

R)-product. Although there is still room for further improvement of the enantioselectivity, this first example of an enantioselective reaction with a,(S-unsaturated ketones reveals the potential of acylzirconocene chlorides as unmasked acyl anion donors. [Pg.165]

Enantioselective -Functionalization of Aldehydes and Ketones The direct and enantiosective functionalization of enolates or enolate equivalents with carbon-, nitrogen-, oxygen-, sulfur- or halogen-centered electrophiles represents a powerful transformation of chemical synthesis and of fundamental importance to modem practitioners of asymmetric molecule constmction. Independent studies from List, J0rgensen, Cordova, Hayashi, and MacMiUan have demonstrated the power of enamine catalysis, developing catalytic enantioselective reactions such as... [Pg.330]

Abstract The reversible reaction of primary or secondary amines with enolizable aldehydes or ketones affords nncleophilic intermediates, enamines. With chiral amines, catalytic enantioselective reactions via enamine intermediates become possible. In this review, structure-activity relationships and the scope as well as cnrrent limitations of enamine catalysis are discnssed. [Pg.29]

Benzamido-cinnamic acid, 20, 38, 353 Benzofuran polymerization, 181 Benzoin condensation, 326 Benzomorphans, 37 Benzycinchoninium bromide, 334 Benzycinchoninium chloride, 334, 338 Bifiinctional catalysts, 328 Bifiinctional ketones, enantioselectivity, 66 BINAP allylation, 194 allylic alcohols, 46 axial chirality, 18 complex catalysts, 47 cyclic substrates, 115, 117 double hydrogenation, 72 Heck reaction, 191 hydrogen incorporation, 51 hydrogen shift, 100 hydrogenation, 18, 28, 57, 309 hydrosilylation, 126 inclusion complexes, oxides, 97 ligands, 19, 105 molecular structure, 50, 115 mono- and bis-complexes, 106 NMR spectra, 105 olefin isomerization, 96... [Pg.192]

Keywords Aldol, Direct, Ketone, Asymmetric catalysis, Enantioselective reaction, Diastereo-selectivity, 1,2-Diol, Aldehyde, Enamine, Lewis acid, Bronsted base, Organocatalysis, Bimetal-... [Pg.135]

Asymmetric Mannich reactions provide useful routes for the synthesis of optically active p-amino ketones or esters, which are versatile chiral building blocks for the preparation of many nitrogen-containing biologically important compounds [1-6]. While several diastereoselective Mannich reactions with chiral auxiliaries have been reported, very little is known about enantioselective versions. In 1991, Corey et al. reported the first example of the enantioselective synthesis of p-amino acid esters using chiral boron enolates [7]. Yamamoto et al. disclosed enantioselective reactions of imines with ketene silyl acetals using a Bronsted acid-assisted chiral Lewis acid [8]. In all cases, however, stoichiometric amounts of chiral sources were needed. Asymmetric Mannich reactions using small amounts of chiral sources were not reported before 1997. This chapter presents an overview of catalytic asymmetric Mannich reactions. [Pg.143]

Buchwald has designed a hindered dialkylphosphino-binaphthyl ligand (3) that is much more active than the original ligand for asymmetric arylation of ketone enolates. Reactions occur at room temperature using only 2 mol % catalyst with enantioselectivities up to 94% [41]. Additionally, the Buchwald group has developed an electron-rich monodentate ligand (4) capable of vinylation of ketone enolates with up to 92% ee [42]. [Pg.167]

Protected glycine derivatives have been used as the nucleophilic partner in enantioselective syntheses of amino acid derivatives by chiral PTC (Scheme 10.9). Loupy and co-workers have reported the addition of diethyl acetylaminomalonate to chalcone without solvent with enan-tioselectivity up to 82% ee [44]. The recent report from the Corey group, with catalyst 8a used in conjunction with the benzophenone imine of glycine t-butyl ester 35, discussed earlier, results in highly enantioselective reactions (91-99% ee) with various Michael acceptors (2-cyclo-hexenone, methyl acrylate, and ethyl vinyl ketone) to yield products 71-73 [21], Other Michael reactions resulting in amino acid products are noted [45]. [Pg.741]

Asymmetric hydrogenation of a-amino ketones.1 A catalyst prepared from [Rh(COD)Cl]2 and (2S,4S)-1 effects highly enantioselective hydrogenation of ex-amino ketones. This reaction provides a ready route to (S)-propranolol (3) from a 3-aryloxy-2-oxo-1 -propylamine (2). A number of related a-amino ketones are hydrogenated under these conditions to the corresponding (2S)-alcohols in 85-96% ee, but 3-amino ketones are reduced with lower enantioselectivity. [Pg.215]

Ketones can be converted to dioxiranes by Oxone (2KHSO5 KHSO4 K2SO4) under shghtly alkaline conditions (pH 7-8) (400). The dioxirane of 1,1,1-trifluoroacetone is a powerful yet selective oxidant under mild conditions, typically at temperatures below 313 K (10). Exemplary reactions are stereospecific olefin epoxidation and hydroxylation of tertiary C-H groups, or ketonization of CH2 groups. With chiral ketones, even enantioselective reactions are possible (401). Although the reactions are often performed in excess ketone, it is actually possible to use the ketone in a catalytic fashion, for example, for 1,1,1-trifluoroacetone (Scheme 5). [Pg.71]

The new binaphthyl ligands 49 [22] and 50 [23] have led to a breakthrough in the copper catalyzed 1,4-addition of organozinc reagents to a,jff-unsatu-rated ketones, a reaction which has proved to be difficult if carried out enantioselectively. Selectivities up to 96 % ee have been reached with cyclic substrates, while acyclic substrates still leave room for further improvement. 50 has also been successfully employed in palladium-catalyzed alkylations of allyl acetates [24]. [Pg.162]

Several novel catalysts in which borohydride is complexed with a difiinctional chiral ligand have been developed and used for the enantioselective reduction of prochiral ketones to chiral alcohols. Corey-Bakshi-Shibatareduction (CBS reduction) is an organic reaction which reduces ketones enantioselectively into alcohols by using chiral oxazaborolidines and BHs-THF or catecholborane as stoichiometric reductants (CBS reagent, 1.64) (also see Chapter 6, section 6.4.2). [Pg.21]

With NiCl2-CrCl2 to mediate the reaction of alkenyl halides to ketones, enantioselectivity is induced by 40. ... [Pg.84]

A variety of nucleophiles can be added in a conjugate manner to a,p-unsaturated ketones. The reaction is reversible, so the main difficulty is finding conditions that drive the equilibrium to the right. For catalytic enantioselective Michael reactions, see Krause, N. Hoffinann-Roder, A. Synthesis 2001,171-196. For intramolecular Michael reactions see Little, R.D. Masjedizadeh, M. R. Wallquist, O. Mcloughlin, J. 1. Org. React. 1995, 47, 315-552. [Pg.60]

Scheme 12.1 Effect of modifier and substrate structure on enantioselectivity for Ra-Ni-catalyzed reactions of ketones. Standard reaction Methyl acetoacetate with Ra-Ni/tartrate/ NaBr. For 2- and 3-alkanones a bulky carboxylic acid was used as the co-modifier. Scheme 12.1 Effect of modifier and substrate structure on enantioselectivity for Ra-Ni-catalyzed reactions of ketones. Standard reaction Methyl acetoacetate with Ra-Ni/tartrate/ NaBr. For 2- and 3-alkanones a bulky carboxylic acid was used as the co-modifier.

See other pages where Ketones enantioselective reactions is mentioned: [Pg.247]    [Pg.180]    [Pg.153]    [Pg.54]    [Pg.1611]    [Pg.518]    [Pg.47]    [Pg.49]    [Pg.396]    [Pg.184]    [Pg.1267]    [Pg.134]    [Pg.408]    [Pg.135]    [Pg.116]    [Pg.289]    [Pg.1130]    [Pg.1312]    [Pg.1348]    [Pg.1397]    [Pg.40]    [Pg.458]    [Pg.652]    [Pg.9]   


SEARCH



Enantioselective reaction

Ketones enantioselective

© 2024 chempedia.info