Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones asymmetric induction

With prochiral ketones asymmetric induction at both silicon and carbon centers takes... [Pg.352]

With chiral ketones, asymmetric induction takes place at a silicon center even with an achiral catalyst such as Rh(PPh3)3Cl, which is an application of the stereoselective hydrosiiyiation of cyclic terpene ketones (see 14.4.4.2). Double asymmetric induction is also effective and achieves a high optical yield ... [Pg.352]

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Asymmetric induction by sulfoxide is a very attractive feature. Enantiomerically pure cyclic a-sulfonimidoyl carbanions have been prepared (98S919) through base-catalyzed cyclization of the corresponding tosyloxyalkylsulfoximine 87 to 88 followed by deprotonation with BuLi. The alkylation with Mel or BuBr affords the diastereomerically pure sulfoximine 89, showing that the attack of the electrophile at the anionic C-atom occurs, preferentially, from the side of the sulfoximine O-atom independently from the substituent at Ca-carbon. The reaction of cuprates 90 with cyclic a,p-unsaturated ketones 91 was studied but very low asymmetric induction was observed in 92. [Pg.81]

The carbonyl carbon of an unsymmetrical ketone is a prochiral center reaction with a Grignard reagent 2 (R 7 R, R") can take place on either face of the carbonyl group with equal chance. The products 8a and 8b are consequently formed in equal amounts as racemic mixture, as long as no asymmetric induction becomes effective ... [Pg.144]

The influence of 1,2-asymmctric induction on the exchange of diastereotopic bromine atoms has also been investigated22,23. Thus, treatment of the / -silyloxydibromo compound 15 with butyllithium at — 110°C in the presence of 2-methylpropana led to products 17-19 after the reaction mixture was warmed to 20 °C. The distribution of the products indicates that the diastereomeric lithium compounds 16 A and 16B were formed in a ratio of 84 16, with 16A being kinetically favored by 1,2-asymmetric induction. Formation of the m-configurated epoxide (cis,anti-18) was slowed to such an extent that its formation was incomplete and a substantial amount of the parent bromohydrin 17 remained. The analogous m.yyn-configurat-ed epoxide was not observed. Presumably for sterie reasons, the parent bromohydrin did not cyclize to the epoxide but instead led to the ketone 1923. [Pg.130]

I.3.3.3.3.I.4. Single Asymmetric Induction Reactions of Achiral Aldehydes and Ketones... [Pg.289]

When chloromethylsulfinylmethane is reacted with unsymmetrical ketones in the presence of potassium rm-butoxide in fert-butanol, diastereomeric mixtures of oxiranes are formed, showing that the asymmetric induction at the prostereogenic carbonyl carbon atom is low21. [Pg.654]

These results show that chemical yields are generally higher than for most aldol-type additions of ester cnolates. mainly because of the chemical activation of the methylene group by the sulfoxide, which makes this reaction suitable for any aldehyde or ketone. High asymmetric induction is also generally observed. The aldol adducts obtained by addition to aldehydes have been transformed into optically active four- and five-membered lactones38. [Pg.659]

In this chapter the addition of carbon nucleophiles to simple a,j8-unsaturated sulfoxides, a-sulfinyl-a,/ -unsaturated ketones and a-sulfmyl-a,/ -unsaturated lactones will be discussed separately, in most cases the asymmetric induction arises from the chirality at sulfur. [Pg.1041]

Fluoboric acid is also an efficacious promoter of cyclic oxo-carbenium ions (Scheme 4.24) bearing an activated double bond which, in the presence of open-chain and cyclic dienes, rapidly undergo a Diels-Alder reaction [91]. Chiral a, -unsaturated ketones bearing a -hydroxy substituents, protected as acetals, react with various dienes in the presence of HBF4, affording Diels-Alder adducts that were isolated as alcohols by hydrolysis of the acetal group by TsOH. Some examples of reactions with isoprene are reported in Table 4.23. The enantios-electivity of the reaction is dependent on the size of the substituent R on the of-carbon high levels of asymmetric induction were observed with R = z-Pr (90 1) and R = t-Bu (150 1) and low levels with R = Me (2.7 1) and R = Ph (3.0 1). Scheme 4.24 shows the postulated reaction mechanism. [Pg.187]

Vinyl boranes add to conjugated ketones in the presence of a rhodium catalyst (with high asymmetric induction in the presence of BINAP) 7 Alkynyl-boranes also add to conjugated ketones, in the presence of... [Pg.1032]

The titanium reagent also dimethylates aromatic aldehydes." Triethylaluminum reacts with aldehydes, however, to give the mono-ethyl alcohol, and in the presence of a chiral additive the reaction proceeds with good asymmetric induction." A complex of Me3Ti-MeLi has been shown to be selective for 1,2 addition with conjugated ketones, in the presence of nonconjugated ketones." ... [Pg.1210]

Optically active ketone (6) was needed for a study of asymmetric induction It could be made from acid (7) by a Friedel Crafts route or from nitrile (8) by Grignard addition, but neither of these compounds could be made by alkylation as the branchpoint is on the 3 carbon ( in each). The 1,3 C-C disconnection, e.g. (6b) is not good as it destroys the chiral centre. [Pg.139]

In order to avoid the use of a rather expensive and potentially dangerous borane complex, Bolm et al. have developed an improved procedure for the borane reduction of ketones, which involved two inexpensive reagents namely NaBH4 and TMSCI. The reduction of a series of ketones was examined applying these novel reaction conditions and the same p-hydroxy sulfoximine ligand to that described above (Scheme 10.56). For most ketones, both the level of asymmetric induction and the yield compared favorably to the precedent results. [Pg.337]

The results clearly show that these novel ligands are able to form a suitable asymmetric enviromnent around the metal resulting in high asymmetric induction. Their catalytic potential has been demonstrated in the highly enantioselective Rh-catalyzed hydrogenation of itaconates and a-enamides and Ru-catalyzed hydrogenation of p-functionalized ketone. [Pg.215]

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

Catalytic enantioselective crossed aldehyde-ketone benzoin cyclizations of ketoaldehydes, such as 13, readily obtained from an aryl nitrile oxide and a 1,3-diketone, were studied in order to perform the synthesis of complex molecules. Significant asymmetric induction was observed with chiral triazolium salts such as 14, in the presence of DBU as base, leading to compound 15 in high yield and with 99% ee in favor of the R enantiomer <06AG(E)3492>. [Pg.289]

Two reports have been made of the preparation of P-chiral phosphine oxides through reaction of chiral f-butylphenylphosphine oxide treated with LDA and electrophiles. The electrophiles included aldehydes,355 ketones,355 and benzylic-type halides.356 Optically active a-hydroxyphosphonate products have also been generated from aldehydes and dialkyl phosphites using an asymmetric induction approach with LiAl-BINOL.357... [Pg.62]


See other pages where Ketones asymmetric induction is mentioned: [Pg.152]    [Pg.80]    [Pg.152]    [Pg.80]    [Pg.106]    [Pg.247]    [Pg.247]    [Pg.131]    [Pg.118]    [Pg.230]    [Pg.47]    [Pg.180]    [Pg.334]    [Pg.619]    [Pg.911]    [Pg.73]    [Pg.1210]    [Pg.1222]    [Pg.1533]    [Pg.46]    [Pg.247]    [Pg.38]    [Pg.327]    [Pg.343]    [Pg.1173]    [Pg.220]    [Pg.10]    [Pg.59]    [Pg.1450]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Asymmetrical ketones

© 2024 chempedia.info