Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral ketones, asymmetric

With prochiral ketones asymmetric induction at both silicon and carbon centers takes... [Pg.352]

Chiral aluminium hydride for the asymmetric reduction of prochiral ketones... [Pg.49]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

In the above cases, an optically active reducing agent or catalyst interacts with a prochiral substrate. Asymmetric reduction of ketones has also been achieved with an achiral reducing agent, if the ketone is complexed to an optically active transition metal Lewis acid. ... [Pg.1201]

Chiral diamino carbene complexes of rhodium have been merely used in asymmetric hydrosilylations of prochiral ketones but also in asymmetric addition of aryl boron reagents to enones. [Pg.210]

The Rh-catalysed asymmetric hydrosilylation of prochiral ketones has been studied with complexes bearing monodentate or heteroatom functionalised NHC ligands. For example, complexes of the type [RhCl(l,5-cod)(NHC)] and [RhL(l,5-cod)(NHC)][SbFg ], 70, where L = isoquinoline, 3,5-lutidine and NHC are the chiral monodentate ligands 71 (Fig. 2.11). [Pg.37]

In 2000, Woodward et al. reported that LiGaH4, in combination with the S/ 0-chelate, 2-hydroxy-2 -mercapto-1,1 -binaphthyl (MTBH2), formed an active catalyst for the asymmetric reduction of prochiral ketones with catecholborane as the hydride source (Scheme 10.65). The enantioface differentiation was on the basis of the steric requirements of the ketone substituents. Aryl w-alkyl ketones were reduced in enantioselectivities of 90-93% ee, whereas alkyl methyl ketones e.g. i-Pr, Cy, t-Bu) gave lower enantioselectivities of 60-72% ee. [Pg.343]

Enantiometrically pure alcohols are important and valuable intermediates in the synthesis of pharmaceuticals and other fine chemicals. A variety of synthetic methods have been developed to obtain optically pure alcohols. Among these methods, a straightforward approach is the reduction of prochiral ketones to chiral alcohols. In this context, varieties of chiral metal complexes have been developed as catalysts in asymmetric ketone reductions [ 1-3]. However, in many cases, difficulties remain in the process operation, and in obtaining sufficient enantiomeric purity and productivity [2,3]. In addition, residual metal in the products originating from the metal catalyst presents another challenge because of the ever more stringent regulatory restrictions on the level of metals allowed in pharmaceutical products [4]. An alternative to the chemical asymmetric reduction processes is biocatalytic transformation, which offers... [Pg.136]

Among the most active catalysts for the asymmetric transfer hydrogenation of prochiral ketones and imines to chiral alcohols and amines are arene-ruthenium(II) amino-alcohol (or primary/ secondary 1,2-diamine)-based systems, with an inorganic base as co-catalyst, developed by Noyori139-141 and further explored by others (Scheme 27).142-145... [Pg.95]

Complexation of (124) and (125) with [ Rh(COD)Cl 2] in the presence of Si(OEt)4, followed by sol-gel hydrolysis condensation, afforded new catalytic chiral hybrid material. The catalytic activities and selectivities of these solid materials have been studied in the asymmetric hydro-gen-transfer reduction of prochiral ketones and compared to that of the homogeneous rhodium complexes containing the same ligands (124) and (125) 307... [Pg.115]

The asymmetric organosilane reduction of prochiral ketones has been studied as an alternative to the asymmetric hydrogenation approach. A wide variety of chiral ligand systems in combination with transition metals can be employed for this purpose. The majority of these result in good to excellent chemical yields of the corresponding alcohols along with a trend for better ee results with aryl alkyl ketones than with prochiral dialkyl ketones. [Pg.105]

A number of asymmetric hydrogenations of prochiral ketones to highly enan-tiomerically enriched alcohols are available. A select few are highlighted here. [Pg.112]

Asymmetric transfer hydrogenation can be employed in the asymmetric hydrogenation of prochiral ketones with a ruthenium complex of bis(oxazolinylmethyl) amine ligand 110. Enantioselectivities are greater than 95%.643... [Pg.113]

As an extension of the asymmetric hydrogenation of prochiral ketones to enantiomerically enriched alcohols, the reduction of imines has been a topic of interest in obtaining chiral amines of high enantiomeric purity. Several entries to enantiomerically enriched amines based on the approaches outlined above are available. These asymmetric hydrogenations have proved to be more difficult than those for prochiral ketones, but nevertheless show good promise. [Pg.119]

Chiral amines can also be produced using aminotransferases, either by kinetic resolution of the racemic amine or by asymmetric synthesis from the corresponding prochiral ketone. The reaction involves the transfer of an amino group, a proton and two electrons from a primary amine to a ketone, and proceeds via an intermediate imine adduct. A variety of chiral amines can be obtained with high to very high ee-values. Several transformations have been developed and can be carried out on a 100-kg scale [94]. [Pg.1209]

TABLE 4-21. Asymmetric Oxidation of Prochiral Ketone Enolates to a-Hydroxyl Ketones Using 147... [Pg.254]

Asymmetric Hydrogenation of Enol Esters. Prochiral ketones represent an important class of substrates. A broadly effective and highly enantioselective method for the asymmetric hydrogenation of ketones can produce many useful chiral alcohols. Alternatively, the asymmetric hydrogenation of enol esters to yield a-hydroxyl compounds provides another route to these important compounds. [Pg.343]

New chiral oxazaborolidines that have been prepared from both enantiomers of optically active inexpensive a-pinene have also given quite good results in the asymmetric borane reduction of prochiral ketones.92 Borane and aromatic ketone coordinate to this structurally rigid oxazaborolidine (+)- or (—)-94, forming a six-membered cyclic chair-like transition state (Scheme 6-41). Following the mechanism shown in Scheme 6-37, intramolecular hydride transfer occurs to yield the product with high enantioselectivity. With aliphatic ketones, poor ee is normally obtained (see Table 6-9). [Pg.370]

TABLE 6-9. Asymmetric Reduction of Prochiral Ketones Using 10 mol% of ( + )-94... [Pg.371]

In summary, many attempts have been made at achieving enantioselective reduction of ketones. Modified lithium aluminum hydride as well as the ox-azaborolidine approach have proved to be very successful. Asymmetric hydrogenation catalyzed by a chiral ligand-coordinated transition metal complex also gives good results. Figure 6-7 lists some of the most useful chiral compounds relevant to the enantioselective reduction of prochiral ketones, and interested readers may find the corresponding applications in a number of review articles.77,96,97... [Pg.372]

Various catalytic or stoichiometric asymmetric syntheses and resolutions offer excellent approaches to the chiral co-side chain. Among these methods, kinetic resolution by Sharpless epoxidation,14 amino alcohol-catalyzed organozinc alkylation of a vinylic aldehyde,15 lithium acetylide addition to an alkanal,16 reduction of the corresponding prochiral ketones,17 and BINAL-H reduction18 are all worth mentioning. [Pg.415]

Chiral //-hydroxylester 61 cannot be satisfactorily obtained through the reaction between a prochiral ketone and the enolate. It can, however, be synthesized via the chiral ligand-induced asymmetric Reformatsky reaction of ketones (Scheme 8-21). [Pg.469]

The quality of the ligand can be determined by performing an asymmetric reduction reaction on prochiral ketones according to the following procedure. [Pg.167]

Asymmetric hydrogenation of prochiral ketones,s Ketones substituted in the a- or (3-position by diverse polar groups, particularly OH,OR,NR2,COOR, can undergo highly enantioselective hydrogenation catalyzed by BINAP-Ru complexes. A key factor of asymmetric induction is undoubtedly chelation of the carbonyl group and the hetero atom to the Ru atom. [Pg.40]

A more versatile method to use organic polymers in enantioselective catalysis is to employ these as catalytic supports for chiral ligands. This approach has been primarily applied in reactions as asymmetric hydrogenation of prochiral alkenes, asymmetric reduction of ketone and 1,2-additions to carbonyl groups. Later work has included additional studies dealing with Lewis acid-catalyzed Diels-Alder reactions, asymmetric epoxidation, and asymmetric dihydroxylation reactions. Enantioselective catalysis using polymer-supported catalysts is covered rather recently in a review by Bergbreiter [257],... [Pg.519]

TABLE 12. The asymmetric reduction of prochiral ketones under catalysis of chiral urea derivative 8173 (in all reactions 5% catalyst was used)... [Pg.1059]

Cervinka and co-workers have extensively investigated the asymmetric reduction of prochiral ketones with LAH modified with alkaloids and related amino alcohols. Most of this work has been reviewed in detail by Morrison and Mosher (1) and will not be discussed extensively here. Modification of LAH was effected with (-)-quinine (65), (- )-cinchonidine (66), (- )-ephedrine (67), (-)-A-ethyl-ephedrine (68), (-)- l-phenyl-2-dimethylaminoethanol (69), (+ )-quinidine (70), (+ )-cinchonine (71), and (+ )-pseudoephedrine (72). [Pg.262]

Early studies of the asymmetric reduction of prochiral ketones by chiral aluminum alkoxides have been reviewed by Morrison and Mosher (1). Doering and Young (123) reported the reduction of methyl cyclohexyl ketone with chiral 3-methyl-2-butanol in the presence of a catalytic amount of aluminum alkoxide to give the (S)-( + )-carbinol in a 22% optical yield. Jackman and co-workers (124) similarly reduced methyl n-hexyl ketone with chiral 3,3-dimethyl-2-butanol to the (S)-( - )-carbinol in a 6% optical yield. Other attempts resulted in similar low optical yields or gave only racemic products. Since the reductions were carried out under equilibrium conditions, racemization could have accounted for the low optical yields. [Pg.284]

The chiral trialkylaluminum reagent used in the majority of asymmetric reduction studies is (+ )-tris[(S)-2-methylbutyl]aluminum (119) or its etherates. This reagent is readily prepared from (S)-( + )-2-methyl-l-chlorobutane (152,153). Results of the reductions of prochiral ketones with these reagents and other chiral organoaluminum reagents are shown in Table 15. [Pg.291]

The asymmetric reduction of prochiral ketones to their corresponding enantiomerically enriched alcohols is one of the most important molecular transformations in synthetic chemistry (20,21). The products are versatile intermediates for the synthesis of pharmaceuticals, biologically active compounds and fine chemicals (22,23). The racemic reversible reduction of carbonyls to carbinols with superstoichiometric amounts of aluminium alkoxides in alcohols was independently discovered by Meerwein, Ponndorf and Verley (MPV) in 1925 (21—26). Only in the early 1990s, first successful versions of catalytic... [Pg.43]


See other pages where Prochiral ketones, asymmetric is mentioned: [Pg.247]    [Pg.165]    [Pg.231]    [Pg.38]    [Pg.220]    [Pg.83]    [Pg.155]    [Pg.155]    [Pg.10]    [Pg.114]    [Pg.116]    [Pg.497]    [Pg.143]    [Pg.167]    [Pg.502]    [Pg.1060]   


SEARCH



Asymmetric Reduction of Prochiral Ketones Catalyzed by Oxazaborolidines

Asymmetric reduction of a prochiral ketone (chloroacetophenone)

Asymmetric reduction prochiral ketones

Asymmetrical ketones

Prochiral

Prochiral asymmetrization

Prochiral compounds ketones, asymmetric reductive

Prochiral ketones

Prochiral ketones, asymmetric hydrosilylation

Prochirality

© 2024 chempedia.info