Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones defined

Historically carbohydrates were once considered to be hydrates of carbon because their molecular formulas m many (but not all) cases correspond to C (H20) j It IS more realistic to define a carbohydrate as a polyhydroxy aldehyde or polyhydroxy ketone a point of view closer to structural reality and more suggestive of chemical reactivity... [Pg.1026]

The basic carbohydrate molecule possesses an aldehyde or ketone group and a hydroxyl group on every carbon atom except the one involved in the carbonyl group. As a result, carbohydrates are defined as aldehyde or ketone derivatives of polyhydroxy alcohols and their reaction products. A look at the formula for glucose shows that it contains hydrogen and oxygen atoms in the ratio in which they are found in water. The name carbohydrate... [Pg.473]

Methyl-heptenone also forms a bromine derivative which is well suited for the identification of the ketone. This body, which has the formula CgHjjBrgO. OH, melts at 98° to 99°, and is obtained as follows Three grams of methyl-heptenone are mixed with a solution containing 3 grams of caustic soda, 12 grams of bromine, and 100 c c. of water. After a time an oily substance is deposited, which is extracted with ether. The solvent is evaporated, and the residue, redissolved in ether, is treated with animal charcoal and filtered. On slow evaporation the product is obtained in well-defined crystals. [Pg.214]

Now that the allylic oxidation problem has been solved adequately, the next task includes the introduction of the epoxide at C-l and C-2. When a solution of 31 and pyridinium para-tolu-enesulfonate in chlorobenzene is heated to 135°C, the anomeric methoxy group at C-l 1 is eliminated to give intermediate 9 in 80% yield. After some careful experimentation, it was found that epoxy ketone 7 forms smoothly when enone 9 is treated with triphenyl-methyl hydroperoxide and benzyltrimethylammonium isopropoxide (see Scheme 4). In this reaction, the bulky oxidant adds across the more accessible convex face of the carbon framework defined by rings A, E, and F, and leads to the formation of 7 as the only stereoisomer in a yield of 72%. [Pg.462]

Carbons adjacent to a Z group (as defined on p. 548) can be nitrosated with nitrous acid or alkyl nitrites. The initial product is the C-nitroso compound, but these are stable only when there is no tautomerizable hydrogen. When there is, the product is the more stable oxime. The situation is analogous to that with azo compounds and hydrazones (12-7). The mechanism is similar to that in 12-7 R—H —> R + N=0 — R—N=0. The attacking species is either NO or a carrier of it. When the substrate is a simple ketone, the mechanism goes through the enol (as in halogenation 12-4) ... [Pg.780]

Examination of the reactions of a wide variety of olefins with TTN in methanol (92) has revealed that in the majority of cases oxidative rearrangement is the predominant reaction course (cf. cyclohexene, Scheme 9). Further examples are shown in Scheme 18, and the scope and limitations of this procedure for the oxidative rearrangement of various classes of simple olefins to aldehydes and ketones have been defined. From the experimental point of view these reactions are extremely simple, and most of them are... [Pg.187]

Reduction of unsaturated organic substrates such as alkenes, alkynes, ketones, and aldehydes by molecular dihydrogen or other H-sources is an important process in chemistry. In hydrogenation processes some iron complexes have been demonstrated to possess catalytic activity. Although catalytic intermediates have rarely been defined, the Fe-H bond has been thought to be involved in key intermediates. [Pg.30]

Second, it is hard to define similarity in this context. A synthesis may require the transformation of an alcohol to a ketone, and there is ample literature precedent for this. But if there are other alcohols in the molecule, or other groups of atoms which may be affected by the same conditions, it may not be possible to establish this from the literature. If an alcohol is in an unusually crowded position, it may be rather hard to change it into a ketone. Literature precedent may include some crowded alcohols, but nothing quite as crowded, or nothing quite as crowded in the same way. This may be because nobody has tried a similar reaction, or it may be that similar reactions have been tried but found not to work. In the latter case, the unsuccessful result may not have been recorded in the literature. [Pg.54]

Figure 7.26. Photo-induced hydrogen abstraction from the y-carbon leads to biradical 72, which can (a) revert to the starting ketone, (b) cyclize, or (c) cleave the 2,3-CC bond. The structure for y-H abstraction for the starting ketone is also shown and the ideal parameters defined and listed. Figure 7.26. Photo-induced hydrogen abstraction from the y-carbon leads to biradical 72, which can (a) revert to the starting ketone, (b) cyclize, or (c) cleave the 2,3-CC bond. The structure for y-H abstraction for the starting ketone is also shown and the ideal parameters defined and listed.
This section deals with reactions that correspond to Pathway C, defined earlier (p. 64), that lead to formation of alkenes. The reactions discussed include those of phosphorus-stabilized nucleophiles (Wittig and related reactions), a a-silyl (Peterson reaction) and a-sulfonyl (Julia olefination) with aldehydes and ketones. These important rections can be used to convert a carbonyl group to an alkene by reaction with a carbon nucleophile. In each case, the addition step is followed by an elimination. [Pg.157]

When second generation candidates differing from finasteride only at the C17 position were considered for development, a second team was tasked with defining the synthesis while the first delivery of finasteride was being completed. Three ketones were considered as potential back-up compounds, the s-Bu, i-Pr, and i-Bu ketones (2,19, 3 in Scheme 3.4). Ideally, the new route would allow divergence at a late stage of the synthesis to make both finasteride and the ketone selected for... [Pg.82]

Unfortunately, it quickly became apparent that a shortfall in this proposal was an inability to prepare the desired vinyl halide 25 in a straightforward and selective manner [19]. In contrast, we reasoned that the selective formation of an enol sulfonate, such as the enol triflate 26a, could be controlled by judicious tuning of enolization conditions starting from the corresponding ketone, and that such an enol sulfonate would possibly be a substrate for a palladium-mediated coupling (Scheme 9.17). In this way a common intermediate from the previously defined synthesis, that is, the racemic ketone rac-13 or its cyano equivalent rac-5 could be used to generate the required enamide. [Pg.255]

Influence of THP/Ru ratio and solvent systems. Many empirical studies were carried out on variation of conversions with the THP Ru ratio, defined as R, which was varied from 0.5 to 6.0. Invariably, in the H20/buffer standard conditions (and other solvent systems - see below), conversions for any selected reaction time decreased when R > 3, but this was not usually the optimum ratio. For the ketone 10b, the maximum conversion was at R = 3, but for ketone 10c and the alkene substrates such as lb and 3a, R was closer to 1 for 6c, the aldehyde substrate, optimum conversion was at R 2. The unknown nature of the catalytic species present in solution makes any discussion of these data meaningless. [Pg.141]


See other pages where Ketones defined is mentioned: [Pg.262]    [Pg.11]    [Pg.96]    [Pg.215]    [Pg.793]    [Pg.13]    [Pg.338]    [Pg.247]    [Pg.352]    [Pg.95]    [Pg.461]    [Pg.181]    [Pg.62]    [Pg.271]    [Pg.793]    [Pg.34]    [Pg.184]    [Pg.75]    [Pg.454]    [Pg.478]    [Pg.490]    [Pg.674]    [Pg.579]    [Pg.21]    [Pg.64]    [Pg.101]    [Pg.1022]    [Pg.547]    [Pg.165]    [Pg.483]    [Pg.170]    [Pg.310]    [Pg.57]    [Pg.99]    [Pg.70]    [Pg.39]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Ketones, addition derivatives defined

© 2024 chempedia.info