Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazolines stereoselectivity

Isoxazolines, stereoselectivity of formation by cycloaddition to chiral enitols and pentenolides 88MI32. [Pg.70]

The versatility of the INOC reaction is evident from the synthesis of tetrahy-drofurans fused to an isoxazoline 22a-f (Eq. 3) [181. a-Allyloxyaldoximes 21, formed by the reduction of jS-nitrostyrenes 19 with SnCl2 2H2O in the presence of an unsaturated alcohol 20, are transformed to isoxazolines 22 in high yield on treatment with NaOCl via stereoselective ring closure of a nitrile oxide intermediate (Table 2). [Pg.5]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

In the seven-step stereoselective total synthesis of ptilocaulin 44 [21 ], a potent antileukemic and antimicrobial agent isolated [22] from marine sponges, the oxime 36 was treated with NaOCl providing the tricyclic isoxazoline 38 in 89% yield without isolation of the nitrile oxide intermediate 37 (Scheme 5) [23]. Isoxazoline 38 was obtained as a mixture of four diastereomers and their ratio was... [Pg.7]

A regio- and stereospecific INOC reaction of unsymmetrical silaketals 114, synthesized in one pot from unsaturated alcohols, nitro ethanol, and dichloro-silanes, via the nitrile oxide 115 to isoxazolines 116 has been described (Scheme 14) [37a]. The intermolecular version of the cycloaddition, under similar conditions, proceeds with poor regio and stereoselectivity. [Pg.16]

Although nitrile oxide cycloadditions have been extensively investigated, cycloadditions of silyl nitronates, synthetic equivalent of nitrile oxides in their reactions with olefins, have not received similar attention. Since we found that the initial cycloadducts, hl-silyloxyisoxazolidines, are formed with high degree of stereoselectivity and can be easily transformed into isoxazolines upon treatment with acid or TBAF, intramolecular silylnitronate-olefin cycloadditions (ISOC) have emerged as a superior alternative to their corresponding INOC reactions [43]. Furthermore, adaptability of ISOC reactions to one-pot tandem sequences involving 1,4-addition and ISOC as the key steps has recently been demonstrated [44]. [Pg.21]

Treatment of 2-bromo aldehydes and ethyl nitroacetate with alumina gives 4-hydroxy-2-isoxazoline-2-oxides with high stereoselectivity (Eq. 8.81).131... [Pg.269]

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

P-Nitrosulfides, formed by Michael addition of allyl mercaptan to P-nitroenones, undergo either INOC or ISOC to give tetrahydrothiopheno[3,4-c] isoxazolines. In this case, stereoselectivity of ISOC is also better than that of INOC (Eq. 8.88).140... [Pg.272]

Heterocycles Both non-aromatic unsaturated heterocycles and heteroaromatic compounds are able to play the role of ethene dipolarophiles in reactions with nitrile oxides. 1,3-Dipolar cycloadditions of various unsaturated oxygen heterocycles are well documented. Thus, 2-furonitrile oxide and its 5-substituted derivatives give isoxazoline adducts, for example, 90, with 2,3- and 2,5-dihydro-furan, 2,3-dihydropyran, l,3-dioxep-5-ene, its 2-methyl- and 2-phenyl-substituted derivatives, 5,6-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-2-ene, and 1,4-epoxy-l,4-dihydronaphthalene. Regio- and endo-exo stereoselectivities have also been determined (259). [Pg.37]

A characteristic feature of contemporary investigations in the held under consideration, is the interest in cycloaddition reactions of nitrile oxides with acetylenes in which properties of the C=C bond are modified by complex formation or by an adjacent metal or metalloid atom. The use of such compounds offers promising synthetic results. In particular, unlike the frequently unselec-tive reactions of 1,3-enynes with 1,3-dipoles, nitrile oxides add chemo-, regio-and stereoselectively to the free double bond of (l,3-enyne)Co2(CO)6 complexes to provide 5-alkynyl-2-oxazoline derivatives in moderate to excellent yield. For example, enyne 215 reacts with in situ generated PhCNO to give 80% yield of isoxazoline 216 (372). [Pg.64]

Diastereoselective intermolecular nitrile oxide—olefin cycloaddition has been used in an enantioselective synthesis of the C(7)-C(24) segment 433 of the 24-membered natural lactone, macrolactin A 434 (471, 472). Two (carbonyl)iron moieties are instrumental for the stereoselective preparation of the C(8)-C(ii) E,Z-diene and the C(i5) and C(24) sp3 stereocenters. Also it is important to note that the (carbonyl)iron complexation serves to protect the C(8)-C(ii) and C(i6)-C(i9) diene groups during the reductive hydrolysis of an isoxazoline ring. [Pg.95]

In particular, a series of isoxazolines (211) fused to the five-membered ring was synthesized (193) (Scheme 3.149, Eq. 1). As a rule, the reactions are characterized by high stereoselectivity (dr > 20 1). [Pg.566]

In the EVOC process, the stereoselectivity of both reactions shown in Scheme 3.149 is substantially lower compared to that in ISOC however, the yield of isoxazolines (211) and (212a,b) is noticeably higher. [Pg.568]

Using a stoichiometric amount of (i ,i )-DIPT as the chiral auxiliary, optically active 2-isoxazolines can be obtained via asymmetric 1,3-dipolar addition of achiral allylic alcohols with nitrile oxides or nitrones bearing an electron-withdrawing group (Scheme 5-53).86a Furthermore, the catalytic 1,3-dipolar cycloaddition of nitrile oxide has been achieved by adding a small amount of 1,4-dioxane (Scheme 5-53, Eq. 3).86b The presence of ethereal compounds such as 1,4-dioxane is crucial for the reproducibly higher stereoselectivity. [Pg.310]

A recent breakthrough in this field was made by Kanemasa and co-workers (136-138), who outlined a method to overcome the low selectivity of the cycloaddition to allylic alcohols by converting the hydroxyl group to a magnesium alkoxide. Coordination of both reactants to the metal ion accelerates the cycloaddition, affording the isoxazoline product with good to excellent stereoselectivity (136). Two transition states were proposed as pathways to the anti (erythro) and syn... [Pg.391]

Ab initio calculations also confirm that the use of an allyl magnesium alkoxide in place of the alcohol functionality will lead to high or complete stereoselectivity (138). When homoallylic alcohols are used, the Kanemasa protocol afforded the respective isoxazolines with poor stereoselectivity ( 55 45) in the case of terminal aUcenes, but with very high diastereoselectivity (up to 96 4) in the reaction of cis-1,2-disubstituted olefins (136). Extension of this concept to the reaction of a-silyl allyl alcohols also proved feasible and produced the syn (threo) adducts as nearly pure diastereomers (>94 6) (137). Thus, the normal stereoselectivity of the cycloaddition to the Morita-Baylis-Hillman adducts (anti > syn, see above) can be reversed by prior addition of a Grignard reagent (176,177). Both this reversal... [Pg.392]

The use of other metal cations such as those derived from zinc, lithium, or aluminium proved less effective (136). Treatment of allyl alcohol with diethyl zinc in the presence of a catalytic amount of diisopropyl (/ ,/ )-(+ )-tartrate (DIPT) in 1,4-dioxane, however, afforded the corresponding (5/f)-2-isoxazolines with excellent selectivity er >92 8) (178). Addition of dioxane was necessary in order to avoid precipitation of the complex of zinc salts containing the DIPT moiety. Without this solvent, lower stereoselectivity was found, probably due to the precipitation mentioned above, which prevents the favorable catalytic cycle proposed (Scheme 6.32) (178). [Pg.393]

Akiyama et al. (180) overcame this problem by employing ch/ro-inositol derivatives as chiral auxiliaries for the acrylic ester, which afforded dipolar cycloadducts with a high degree of stereoselectivity (Scheme 6.34). Formation of the major products [(55)-isoxazoline-5-esters] was suggested to arise from the s-cis conformer of acrylate 27, the minor product being derived from the s-trans conformer 28. The bulky protective group (in this case tert-butyldiphenylsilyl) would effectively shield the Re face of the olefinic double bond and destabilize the s-trans conformer 28. [Pg.394]

The methyl and benzyl esters of proline were also used as chiral auxiliaries in respective acrylamides, but the isoxazoline cycloadducts were obtained with only poor to modest stereoselectivity (189,190). The related indoline-2-carboxylic acid derivative 33, however, showed excellent ability to direct nitrile oxide attack, favoring one rotamer (Scheme 6.37), and thereby leading to 3-phenylisoxazoline-5-carboxamide... [Pg.395]

Another approach to obtain pure enantiomers of isoxazolines involves the use of chiral acrolein aminals, formed with A.A -substituted diaminodiphenylethanes (194). Thus, with this chiral imidazolidinyl auxiliary in the p-position, and with unsaturated esters serving as the dipolarophile, benzonitrile oxide afforded only one regioisomeric cycloadduct with good stereoselectivity (194) (Scheme 6.40). When the analogous A,A -dimethyl auxiliary was chosen, excellent stereoselectivity was accompanied by poor regioselectivity (194). [Pg.398]

An intramolecular nitrile oxide cycloaddition also served as the key step in the stereoselective assemblage of the skeleton of angular triquinane sesquiterpenes of the isocomene series. Tetracyclic isoxazoline 203 was obtained from oxime 202 [derived from tetrahydroindandione 201] and on treatment with sodium hypochlorite... [Pg.443]

Intramolecular cycloaddition of the nitrile oxide intermediate generated from the unsaturated oxime 221 was used for an evenmal synthesis of la,2p,25-trihydroxy-vitamin D3 (262) (Scheme 6.90). Oxime 221, prepared from tri-O-isopropyhdene-d-mannitol (220), was processed as usual to give isoxazoline 222 in good yield and with excellent stereoselectivity. Conversion of 222 to the aldol 223 proceeded in the normal manner and further elaboration gave the desired diene intermediate 224 (262). [Pg.446]

A stereoselective synthesis of testosterone (261) was advanced by Fukumoto and co-workers (331), where ring B was joined to the C/D part by an intramolecular nitrile oxide cycloaddition. The key nitrile oxide dipole was generated in situ from oxime 258, which in turn was derived from the optically active tetrahydroin-danone 257. Tetracyclic isoxazoline (259) was obtained as a single stereoisomer... [Pg.450]

Few examples of total syntheses have been reported that involve an intramolecular nitrile oxide cycloaddition and ensuing reduction to an aminoalcohol. The very first example was reported by Confalone et al. (334) and involved a synthesis of the naturally occurring vitamin biotin (287). The nitro precursor 284 was easily prepared from cycloheptene. When treated with phenyl isocyanate-triethylamine, cycloaddition led to the all-cis-fused tricyclic isoxazoline 285 with high stereoselectivity (Scheme 6.102). Reduction with LiAlFLj afforded aminoalcohol 286 as a... [Pg.454]


See other pages where Isoxazolines stereoselectivity is mentioned: [Pg.90]    [Pg.272]    [Pg.533]    [Pg.22]    [Pg.26]    [Pg.28]    [Pg.269]    [Pg.20]    [Pg.26]    [Pg.44]    [Pg.73]    [Pg.68]    [Pg.713]    [Pg.258]    [Pg.298]    [Pg.395]    [Pg.430]    [Pg.447]    [Pg.461]    [Pg.462]    [Pg.163]    [Pg.106]    [Pg.107]    [Pg.90]   
See also in sourсe #XX -- [ Pg.383 ]

See also in sourсe #XX -- [ Pg.4 , Pg.383 ]

See also in sourсe #XX -- [ Pg.4 , Pg.383 ]




SEARCH



Isoxazoline

Isoxazolines

© 2024 chempedia.info