Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoquinoline nucleophiles

Chemical Properties. The presence of both a carbocycHc and a heterocycHc ring faciUtates a broad range of chemical reactions for (1) and (2). Quaternary alkylation on nitrogen takes place readily, but unlike pyridine both quinoline and isoquinoline show addition by subsequent reaction with nucleophiles. Nucleophilic substitution is promoted by the heterocycHc nitrogen. ElectrophiHc substitution takes place much more easily than in pyridine, and the substituents are generally located in the carbocycHc ring. [Pg.389]

Isoquinoline, l-(dimethylamino)-methylation, 2, 179 Isoquinoline, halo-lithium derivatives, 2, 363 Isoquinoline, 3-halo-nucleophilic substitution, 2, 59 Isoquinoline, l-halo-3-hydroxy-synthesis... [Pg.679]

Chichibabin reaction, 5, 409-410 UV spectra, 5, 356 Naphthimidazoles, 2-amino-tautomerism, 5, 368 Naphth[2,3-h]imidazoles oxidation, 5, 405 Naphth[l,2-d]imidazolium salts nucleophilic substitution, 5, 412 Naphth[l, 2-h]isoquinolines... [Pg.705]

With a chiral phenylglycinol nucleophile (Scheme 8.4.17), use of the chloride Zincke salt 6 (cf. Scheme 8.4.16) gave decomposition of the salt back to isoquinoline and 2,4-dinitrochlorobenzene. The desired reaction was enabled by exchanging chloride for the weakly nucleophilic dodecyl sulfate anion. The resulting salt 49 also had improved... [Pg.362]

To derive the maximum amount of information about intranuclear and intemuclear activation for nucleophilic substitution of bicyclo-aromatics, the kinetic studies on quinolines and isoquinolines are related herein to those on halo-1- and -2-nitro-naphthalenes, and data on polyazanaphthalenes are compared with those on poly-nitronaphthalenes. The reactivity rules thereby deduced are based on such limited data, however, that they should be regarded as tentative and subject to confirmation or modification on the basis of further experimental study. In many cases, only a single reaction has been investigated. From the data in Tables IX to XVI, one can derive certain conclusions about the effects of the nucleophile, leaving group, other substituents, solvent, and comparison temperature, all of which are summarized at the end of this section. [Pg.331]

Line No. Isoquinoline substituents Nucleophile (solvent) Rate constant (temp. °C) 106 A liter mole i sec i Activation energ3 kcal mole-1 Entropy of activation cal mole-1, j0g- Frequency factor 1 logioA Ref. [Pg.348]

Quinoxalinyl, 4-cinnolinyl, and 1-phthalazinyl derivatives, which are all activated by a combination of induction and resonance, have very similar kinetic characteristics (Table XV, p. 352) in ethoxylation and piperidination, but 2-chloroquinoxaline is stated (no data) to be more slowly phenoxylated. In nucleophilic substitution of methoxy groups with ethoxy or isopropoxy groups, the quinoxaline compound is less reactive than the cinnoline and phthalazine derivatives and more reactive than the quinoline and isoquinoline analogs. 2-Chloroquinoxaline is more reactive than its monocyclic analog, 2-chloropyrazine, with thiourea or with piperidine (Scheme VI, p. 350). [Pg.375]

Quinoxalines undergo facile addition reactions with nucleophilic reagents. The reaction of quinoxaline with allylmagnesium bromide gives, after hydrolysis of the initial adduct, 86% of 2,3-diallyl-l,2,3,4-tetrahydroquinoxaline. Quinoxaline is more reactive to this nucleophile than related aza-heterocyclic compounds, and the observed order of reactivity is pyridine < quinoline isoquinoline < phenan-thridine acridine < quinoxaline. ... [Pg.213]

N-Heteroaromatic compounds like pyridine, pyridazine, pyrazine, isoquinoline, and their derivatives42,250 react with diphenyl cyclopropenone in a formal (3+2) cycloaddition mode to the C=N bond of the heterocycle. As expected from the results discussed earlier (p. 67), the reaction is initiated by attack of nitrogen at the cyclopropenone C3 position and followed by stabilization of the intermediate betaine 390 through nucleophilic interaction of the Cl/C3 bond with the activated a-site of the heterocycle, giving rise to derivatives of 2-hydroxy pyrrocoline 391—394). In some cases, e.g. diphenyl cyclopropenone and pyridine42, further interaction with a second cyclopropenone molecule is possible under the basic conditions leading to esters of type 392. [Pg.84]

Moreover, one should mention that in spite of similar electronic structures, PBN and the isoquinoline nitrone (278) react in a different way. Under no circumstances does PBN give an oxidative methoxylation product, whereas nitrone (278) reacts readily to form a,a-dialkoxy-substituted nitroxyl radical (280) (517). Perhaps this difference might be due to the ability to form a complex with methanol in aldo-nitrones with -configuration. This seems favorable for a fast nucleophilic addition of methanol to the radical cation (RC), formed in the oxidation step. The a-methoxy nitrone (279), obtained in the initial methoxylation, has a lower oxidation potential than the initial aldo-nitrone (see Section 2.4). Its oxidation to the radical cation and subsequent reaction with methanol results in the formation of the a,a-dimethoxy-substituted nitroxyl radical (280) (Scheme 2.105). [Pg.218]

It has been found that the cupric sulfate-mediated aminolysis of 3-bromo[ N]isoquinoline with ethanolic ammonia (130°C, 7 days reaction time) yields a mixture of 13 and 14, ratio 75 25 (74RTC198). It shows that also with the weaker nucleophile ammonia a part of 3-bromoisoquinoline can undergone a ring-opening, ring-closure process. [Pg.19]

Furthermore, pyrazole 366 reacts with phthalazine (Scheme 132) to afford pyrazolo[3, 4 4,5]pyrido[6,l-a]phthalazine (367). From a mechanistic viewpoint, no 1,6-dipolar cyclization occurs. Instead, an intramolecular nucleophilic aromatic substitution to the heteroarene is likely. Isoquinoline leads to zwitterionic 368 (94JOC3985). [Pg.236]

Nucleophilic substitution occurs exclusively at position 1 in isoquinoline the alternative position C-3 is quite unreactive. This is explained by the loss of... [Pg.443]

Several further publications report on the (—)-sparteine-mediated addition of alkyl-or aryllithium onto imines or the C=N bond of isoquinolines . Usually, the achieved enantiomeric excesses are low and, sometimes, other chiral ligands serve better. As reported by Muller and coworkers, the nucleophilic substitution of arenecarbaldehyde dialkyl acetals by o-substituted aryllithium reagents is an alternative . [Pg.1149]

The most frequently used method for the preparation of isoquinoline Reissert compounds is treatment of an isoquinoline with acyl chloride and potassium cyanide in water or in a dichloromethane-water solvent system. Though this method could be successfully applied in a great number of syntheses, it has also some disadvantages. First, the starting isoquinoline and the Reissert compound formed in the reaction are usually insoluble in water. Second, in the case of reactive acyl halides the hydrolysis of this reaction partner may became dominant. Third, the hydroxide ion present could compete with the cyanide ion as a nucleophile to produce a pseudobase instead of Reissert compound. To decrease the pseudobase formation phase-transfer catalysts have been used successfully in the case of the dichloromethane-water solvent system, resulting in considerably increased yields of the Reissert compound. To avoid the hydrolysis of reactive acid halides in some cases nonaqueous media have been applied, e.g., acetonitrile, acetone, dioxane, benzene, while utilizing hydrogen cyanide or trimethylsilyl cyanide as reactants instead of potassium cyanide. [Pg.2]

Nucleophilic reagents attack pyridine at the a-position to form an adduct that rearomatizes by dissociation (Scheme 1). Only very strong nucleophiles, e.g. NH2-, RLi, LAH, Na-NH3, react, and for the second step to afford a substitution product (5), conditions that favour hydride loss are required. Adducts formed with hydride ions (from LAH) or carbanions (from lithium alkyls) are relatively more stable than the others at low temperature, and dihydropyridines (6) can be obtained by careful neutralization. Fusion of a benzene ring to pyridine increases reactivity towards nucleophiles, and attack is now found at both a- and y-positions in quinoline (7) and at C-l in isoquinoline (8). This may be attributed to a smaller loss of aromaticity in forming the initial adduct than in pyridine, and thus a correspondingly decreased tendency to rearomatize is also observed. Acridine reacts even more easily, but nucleophilic attack is now limited to the y -position (9), as attachment of nucleophiles at ring junctions is very rare. [Pg.167]

Quinoline 1-oxide undergoes nucleophilic attack by ozone to yield a hydroxamic acid (128), and 40% of the starting iV-oxide is recovered (Scheme 74). When an excess of ozone is employed the aldehydes (129) and (130) are obtained. Formation of these products has been attributed to electrophilic attack by ozone rather than further oxidation of (128), because in a separate experiment (128) yielded carbostyril on treatment with ozone. Isoquinoline 2-oxide yields 2-hydroxyisoquinolin-l-one, and acridine 10-oxide gives 10-hydroxyacridone and acridone in a similar manner to the above. Likewise, phenanthridine 5-oxide affords mainly 5-hydroxyphenanthridone. Quinoline 1-oxide undergoes oxidation by lead tetraacetate as shown (Scheme 75). [Pg.229]

Nucleophilic substitutions Nucleophilic substitutions in quinoline and isoquinoline occur on the pyridine ring because a pyridine ring is more... [Pg.167]

A well understood case is that of quinoline reaction at position 2 is kinetically favored as compared with reaction at position 4, but the adduct from the latter is thermodynamically more stable. This situation, where the site of attack leading to the more stable adduct is the y position, is analogous with those regarding the formation of Meisenheimer adducts from benzene and pyridine derivatives and RCT nucleophiles. Presumably, with quinoline kinetic control favors the position that is more strongly influenced by the inductive effect of the heteroatom. The fact that position 2 of quinoline is the most reactive toward nucleophilic reagents is probably related to the lower 71-electron density at that position.123 However, the predominance of the C-4 adduct at equilibrium can be better justified by the atom localization energies for nucleophilic attachment at the different positions of quinoline. Moreover, both 7t-electron densities and atom localization energies indicate position 1 of isoquinoline to be the most favored one for nucleophilic addition. [Pg.365]

Electron density calculations suggest that electrophilic attack in pyridine (42) is favored at C-3, whereas nucleophilic attack occurs preferentially at C-2 and to a lesser extent at C-4. Cytochrome P-450 mediated ring hydroxylation of pyridine would, therefore, be expected to occur predominantly at C-3, the most electron-rich carbon atom. Although 3-hydroxypyridine is an in vivo metabolite in several species, the major C-oxidation product detected in the urine of most species examined was 4-pyridone (82MI10903). The enzyme system catalyzing the formation of this latter metabolite may involve the molybdenum hydroxylases and not cytochrome P-450 (see next paragraph). In the related heterocycle quinoline (43), positions of high electron density are at C-3, C-6 and C-8, while in isoquinoline (44) they are at C-5, C-7 and C-8. Nucleophilic substitution predictably occurs... [Pg.232]


See other pages where Isoquinoline nucleophiles is mentioned: [Pg.100]    [Pg.100]    [Pg.679]    [Pg.730]    [Pg.78]    [Pg.83]    [Pg.149]    [Pg.151]    [Pg.316]    [Pg.323]    [Pg.358]    [Pg.370]    [Pg.184]    [Pg.188]    [Pg.187]    [Pg.649]    [Pg.19]    [Pg.256]    [Pg.310]    [Pg.41]    [Pg.167]    [Pg.40]    [Pg.45]    [Pg.182]    [Pg.220]    [Pg.227]    [Pg.324]    [Pg.602]    [Pg.168]    [Pg.88]    [Pg.204]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Bases nucleophilic additions, isoquinoline

Isoquinoline nucleophilic substitution

Isoquinoline, activation nucleophilic substitution

Isoquinolines halo-, nucleophilic displacement

Isoquinolines nucleophilic substitution, regioselectivity

Nucleophilic aromatic substitution isoquinoline

Nucleophilic bases, isoquinoline

Nucleophilic substitution isoquinolines

Nucleophilic substitution—continued of isoquinolines

© 2024 chempedia.info